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Security and Cryptography
• Involves capabilities from different areas
– Mathematics, physics, computer science, networking, law, 

and more

• How to build a secure system?
– Many aspects to consider 
– Cryptography: The heart of any secure system
– Other aspects: Physical security, logical security, security 

governance, security of code and implementations
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Provable Security
• In the past: The ancient art of secure communication
– Examples: Caesar cipher, ENIGMA, one-time pad

• Today: A real science 
– Thanks to pioneers such as Silvio Micali, Shafi Goldwasser, 

Oded Goldreich
– Formal definitions and security proofs

• We will give a very high-level overview 
– Focus on applications
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CHAPTER 1: 
Symmetric 

Cryptography
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Confidential Communication
• Alice wants to send a message to Bob over some 

communication channel
• Eve can listen to the channel
• How to protect the message content?
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Secret-Key Encryption
• Assume Alice and Bob share a secret key

• Correctness: 𝐃 𝑘, 𝐄 𝑘,𝑚 = 𝑚
• Kerckhoffs principle: Security only based on the 

secrecy of the key (algorithms are public)
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Perfect Secrecy
• Definition due to Claude Shannon (1949)
– Ciphertext reveals nothing about the plaintext

• One-time pad (binary version):
– 𝐄 𝑘,𝑚 = 𝑘 ⊕𝑚
– 𝐃 𝑘, 𝑐 = 𝑘 ⊕ 𝑐

• Limitations:
– One key per message, and message as long as key
– Can be shown to be inherent
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Computational Security
• Previous definition is information-theoretic
– Holds even for all-powerful adversaries
– Unconditional security, i.e. no assumptions!

• Natural relaxation: Computational security
– Computationally bounded adversary (PPT Turing machine)
– Adversary has negligible probability of success (e.g. 2!"#)

• Advantage: Single short key for encrypting an 
unbounded number of messages
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AES (Rijndael)
• A widely used blockcipher
– Created to replace DES

• NIST call for proposals in 1997
– Evaluation criteria: Security, costs, intellectual property, 

implementation and execution, versatility, key agility, 
simplicity

• Two rounds were performed, 15 algorithms were 
selected in the first and 5 in the second
– NIST completed the evaluation on October 2, 2000 and 

selected Rijndael (Daemen + Rijmen)
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AES Structure
• Block length of 128 bits (16 bytes)
– Three key sizes: 128, 192, or 256 bits

• # of rounds: 10, 12, or 14
– Let 𝑠$,&

(()) be 1 byte of the state at a given round (initially 
the first plaintext block)

– The secret key is used to compute the sub-keys 𝑘$,&
(+), one 

for each round 𝑟
– In each round state subject to 4 operations: SubBytes,	
ShiftRows,	MixColumns,	AddRoundKey
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Arithmetic in 𝐺𝐹(2!)
• AES uses the Galois Field 𝐺𝐹 2!
– 1 byte ⇒ 8 bits ⇒ 2 hexadecimal digits
– Example: [01101100],= [6𝐶]-.

• Interpret each byte as the binary coefficients of a 
degree-7 polynomial
– Sum of 2 polynomials is still a degree-7 polynomial
– Multiplication might increase the degree
– Modular reduction w.r.t. irreducible polynomial
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Arithmetic in 𝐺𝐹(2!): Example
• [53]$%8 [𝐶𝐴]$%= [01]$% in 𝐺𝐹 2!
– [53]-.= 𝑋. + 𝑋/ + 𝑋 + 1
– [𝐶𝐴]-.= 𝑋0 + 𝑋. + 𝑋1 + 𝑋

• [53]$%8 𝐶𝐴 $% = 𝑋$# + 𝑋$& + 𝑋$$ + 𝑋$' + 𝑋( +
𝑋! + 𝑋% + 𝑋) + 𝑋" + 𝑋# + 𝑋& + 𝑋
– By performing long division, it is easy to check that 𝑋-1 +
𝑋-, + 𝑋-- + 𝑋-# + 𝑋2 + 𝑋" + 𝑋. + 𝑋3 + 𝑋/ + 𝑋1 +
𝑋, + 𝑋	mod	𝑋" + 𝑋/ + 𝑋1 + 𝑋 + 1 gives 𝑋3 + 𝑋/ +
𝑋1 + 𝑋 + 1 with remainder 1
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SubBytes
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AES S-BOX (1/2)
• A simple substitution box (lookup table)
• It maps 8-bit inputs to 8-bit outputs
– Let 𝑥 = [𝑥0, 𝑥., 𝑥3, 𝑥/, 𝑥1, 𝑥,, 𝑥-, 𝑥#], be the input
– Map 𝑥 into its multiplicative inverse 𝑧 modulo ℎ(𝑋) and 

apply an affine transformation:
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𝑦!
𝑦"
𝑦#
𝑦$
𝑦%
𝑦&
𝑦'
𝑦(

=

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

%

𝑧!
𝑧"
𝑧#
𝑧$
𝑧%
𝑧&
𝑧'
𝑧(

+

1
1
0
0
0
1
1
0



AES S-BOX (2/2)
• Input: [68]
• Output: [45]
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ShiftRows
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MixColumns
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AddRoundKey
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Key Schedule (1/2)
• Takes the original key 𝑘 (128, 192, or 256 bits) and 

derives sub-keys 𝑘(0), for 𝑟 = 10,12,14
• When 𝑘 = 128 and 𝑟 = 10:
– Key expansion array 𝑊 with 44 32-bit elements
– 𝑊 0 ,… ,𝑊[3] equal to the original key (used for initial 

XOR with the plaintext – key whitening) 
– 𝑊 4𝑖 = 𝑊 4 𝑖 − 1 + 𝑔 𝑊 4𝑖 − 1
– 𝑊 4𝑖 + 𝑗 = 𝑊 4𝑖 + 𝑗 − 1 +𝑊[4 𝑖 − 1 + 𝑗]
– 𝑔 is a non-linear function (based on the S-Box)
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Key Schedule (2/2)
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⊕
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Security of AES
• No practical attack is known
– Best attacks break AES with 7 rounds (128-bit key), 8 

rounds (192-bit key) and 9 rounds (256-bit key)

• Brute force is out of reach: 3,4 8 10#! possible 
combinations (128-bit key) 
– Best brute force attack took 5 years to crack a 64-bit key 

using thousands of CPUs

• But AES comes with no proof of security!
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Modes of Operation
• Block ciphers encrypt fixed size blocks
– E.g., AES block size is 128 bits

• Plaintext messages may have an arbitrary length: 
Use a mode of operation
– Segment data & encrypt and chain multiple blocks
– Might require to pad messages to make their length a 

multiple of the block size

• 4 modes defined for DES in ANSI standard "ANSI 
X3.106-1983 Modes of Use"
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ECB Mode
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CBC Mode
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CFB Mode

Crypto 101
Data Privacy and Security

25

E E𝑘

𝑚! 𝑚"
𝑐!

𝑘 … … …

∀𝑖:	𝑐D = 𝑚D ⊕𝐄(𝑘, 𝑐DEF)

⊕ ⊕

𝑐#

𝑐"

Initial Vector

𝑐#



OFB Mode
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CTR Mode
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Comparison
• ECB: Identical plaintext blocks are encrypted into 

identical ciphertext blocks 
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Mode ∥Enc ∥Dec $Access Security
ECB ✔ ✔ ✔ ✘
CBC ✘ ✔ ✔ ✔
CFB ✘ ✔ ✔ ✔
OFB ✘ ✘ ✘ ✔
CTR ✔ ✔ ✔ ✔



Security of Block Ciphers
• Rule of thumb (Shannon): A good block cipher 

should have both confusion and diffusion
– Confusion means there is a complex relation between 

ciphertext and plaintext
– Diffusion roughly means that a one-bit flip in the plaintext 

changes each bit of the ciphertext with probability ≈ 1/2
• But can we define more formally what it means for a 

cipher to be secure?
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One-Time Security
• The indistinguishability paradigm

– Hard to guess 𝑏 w.p. better than 1/2
– No encryption/decryption capabilities
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𝑐
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𝑐 = 𝐄(𝑘,𝑚4)

Inputs: Key 𝑘
Random bit b  



Chosen-Plaintext Attacks (CPA) Security

• Adversary can ask encryption queries
• Requires randomness!
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𝑚′
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𝑚′
𝑐5 = 𝐄(𝑘,𝑚′)



Authenticated Communication
• Alice wants to send a message to Bob over some 

communication channel
• Eve can modify the message
• How to protect the message authenticity?
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Message Authentication Codes
• Assume Alice and Bob share a secret key

• Correctness: By definition
• Security: Should be hard to forge a tag on a message 

without knowing the key
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Unforgeability

• Adversary wins iff (𝑚, 𝜏) is valid and 𝑚 is fresh (i.e. 
not asked during tag queries)
– Reply attacks not covered by definition
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CBC-MAC
• Use AES in CBC mode
• Fix 𝐼𝑉 = 01 and output only the last block
– I.e., for 𝑚 = (𝑚-, … ,𝑚6) where 𝑚$ ∈ {0,1}7 compute 
𝜏$ = 𝐅(𝑘, 𝜏$!-⊕𝑚$), where 𝜏# = 𝐼𝑉, and return 𝜏 = 𝜏6

– Only secure for fixed length messages, for variable length 
messages need to encrypt the output with an indepedent 
key (i.e. 𝜏5 = 𝐅(𝑘5, 𝜏))

– Insecure in case all blocks are output
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Why Fixed Length?
• Suppose we use CBC-MAC to autenticate variable 

length messages
• Adversary picks arbitrary 𝑚$, 𝑚& ∈ {0,1}1 and 

obtains tags on 𝑚$ and 𝑚&⊕ 𝜏$

• Output forgery 𝑚∗ = 𝑚$||𝑚& and 𝜏∗ = 𝜏&
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Why Only the Last Block?
• Suppose CBC-MAC outputs all blocks 
• Adversary picks arbitrary 𝑚$, 𝑚& ∈ {0,1}1 and 

obtains tag 𝜏$||𝜏&on 𝑚$||𝑚&

• Output forgery 𝑚∗ = 𝜏$⊕𝑚&||𝜏&⊕𝑚$and 𝜏∗ =
𝜏&||𝜏$

Crypto 101
Data Privacy and Security

37

𝜏$ = 𝐅 𝑘,𝑚$ ; 𝜏& = 𝐅(𝑘,𝑚&⊕ 𝜏$)

𝐅 𝑘, 𝐅 𝑘,𝑚&⊕ 𝜏$ ⊕ 𝜏&⊕𝑚$ = 𝐅(𝑘,𝑚$)



Why not a Random IV?
• Suppose that for each tag we sample random 
𝜏' ←$ {0,1}1 and output (𝜏', 𝜏4) as tag
– Here, 𝑡 is the number of 𝑛-bit blocks in a message

• Adversary picks arbitrary 𝑚 ∈ {0,1}1 and obtains tag 
(𝜏', 𝜏$) where 𝜏$ = 𝐅(𝑘, 𝜏'⊕𝑚)

• Output forgery 𝑚∗ = 𝜏' and 𝜏∗ = (𝑚, 𝜏$) 
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Cryptographic Hashing

• Security properties:
– One wayness: Given 𝑦, find 𝑥 such that 𝐇 𝑥 = 𝑦
– Weak collision resistance: Given 𝑥, find 𝑥′ ≠ 𝑥 s.t. 𝐇 𝑥 =
𝐇(𝑥′)

– Strong collision resistance: Find 𝑥 and 𝑥′ s.t. 𝐇 𝑥 =
𝐇(𝑥′) but 𝑥 ≠ 𝑥′
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𝐿 = 2ℓ
elements



Brute Force Attacks 
• Assume 𝐇 to be a random hash function
• One wayness: Given 𝑦 choose 𝑥$, … , 𝑥6  and hope 

that 𝐇 𝑥7 = 𝑦 for some 𝑖 ∈ [𝑞]
– Success probability: ≤ 𝑞/𝐿 (union bound)

• Weak collision resistance: Similar to above
• Strong collision resistance: Choose distinct 𝑥$, … , 𝑥6

and hope to find a collision
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Pr 𝑦7 = 𝑦+ ≤
𝑞&

2𝐿



The Birthday Paradox

• Suppose 𝑦$, … , 𝑦6 are random
– Let 𝑁𝑜𝐶𝑜𝑙𝑙$ be the event that no collision occurs within 
𝑦-, … , 𝑦$

– Pr 𝑁𝑜𝐶𝑜𝑙𝑙$8- 𝑁𝑜𝐶𝑜𝑙𝑙$ = (1 − 𝑖/𝐿)

• Thus, 1 − Pr[𝑁𝑜𝐶𝑜𝑙𝑙6] ≥
6(6.$)
"9

– Success w.p. ≥ 1/2 whenever 𝑞 ≈ 𝐿
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𝑒.
7
9 = 𝑒. ∑!"#

$%#7
9

= 𝑒.6(6.$)/&9



Merkle-Damgaard
• Let 𝐜𝐦𝐩𝐬 be a compression function outputting ℓ′

bits out of ℓ bits
– 𝐜𝐦𝐩𝐬 is collision resistant, but domain is fixed

• A construction due to Merkle and Damgaard yields a 
collision resistant hash function for arbitrary 
domains
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𝐜𝐦𝐩𝐬𝑧' = 01

𝑥$

𝐜𝐦𝐩𝐬 𝐜𝐦𝐩𝐬… 𝐜𝐦𝐩𝐬
𝐇(𝑥)𝑧$

𝑥& 𝑥4 𝑥4=$ = 𝑑

𝑧4.$

𝑑 = |𝑥| < 2!

𝑧4



• Compression functions can be constructed from 
block ciphers

	

• Analysis requires to assume idealization of AES
– Because the input is used as the key
– Ideal cipher: Block-cipher as a random permutation for 

every choice of the key

 

𝐜𝐦𝐩𝐬 𝑥$, 𝑥& = 𝑥&⊕𝐀𝐄𝐒 𝑥$, 𝑥&

Davies-Meyer

Crypto 101
Data Privacy and Security

43



• Typical (but flawed) construction of a MAC based on 
a hash function 

• Attack based on length extension (for Merkle-
Damgaard-based constructions)
– Let 𝑚∗ = 𝑚| 𝑑 |𝑚68- and tag 𝜏∗ =
𝐜𝐦𝐩𝐬(𝐜𝐦𝐩𝐬(𝜏| 𝑚68- ||𝑑 + 2) for 𝜏 = 𝐇(𝑘| 𝑚  and 𝑑 =
|𝑚| 

𝐓 𝑘,𝑚 = 𝐇(𝑘||𝑚)

Hash & MAC
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HMAC
• Solution: Hash twice!

– 𝑘8: Key 𝑘 padded with zeroes to the left
– o𝑝𝑎𝑑: 5𝐶5𝐶 …5𝐶 (in HEX)
– 𝑖𝑝𝑎𝑑: 3636…36 (in HEX)

• Internet standard RFC 2104
• Can work with any of SHA-2 or SHA-3
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SHA-3
• 2005-2006: NIST thinks about SHA-3 contest
– MD5 and SHA-1 were damaged by attacks
– SHA-2 based on the same principles

• October 2008: Deadline for proposals
– More efficient than SHA-2
– Output lengths: 224, 256, 384, 512 bits
– Security: collision resistant (weak and strong)

• October 2, 2012: NIST announces Keccak as SHA-3 
winner
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The Sponge Construction
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pad

⊕
𝑓

⊕
𝑓

⊕
𝑓

⊕
𝑓 𝑓 𝑓

0"

0#

+ ℓ

…

• Can be used as a stream cipher, or a MAC too
• Security for ideal 𝑓 is roughly 𝑞(𝑞 − 1)/2>=$

– 𝑞 = # of calls to 𝑓

absorbing squeezing



Inside Keccak
• Absorbing: The message blocks are padded and 

processed
• Squeezing: An output of configurable length is 

produced
• Parameters:
– 𝑏 = 𝑟 + 𝑐 it’s the state width, with 𝑏 = 25 � 2: for values 
𝑙 = 0,1, … , 6

– 𝑟 is the bit rate (length of single blocks)
– 𝑐 is the capacity (security parameter)
– SHA-3: Always 𝑏 = 1600
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The Keccak 𝒇-Permutation

• A permutation over 𝑏 bits
• Variable number of rounds 𝑟 = 12 + 2𝑙
– SHA-3: 𝑙 = 6 and thus 𝑟 = 24

• The functions 𝜃, 𝜌, 𝜋, 𝜄 use XOR, AND, and NOT
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Round 1 Round 𝑟

𝜃 𝜌 𝜋 𝜄

… …



Combining Encryption and Authentication
• Eand authentication separate goals
• Can we achieve both at the same time?
• Intuitively we want that both
– The ciphertext should hide the plaintext
– It should be hard to compute a ciphertext without knowing 

the secret key

• This is called authenticated encryption
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Chosen-Ciphertext Attacks (CCA) Security

• Both encryption and decryption queries
– Cannot query on challenge ciphertext

• Captures non-malleability

Crypto 101
Data Privacy and Security

51

Eve Challenger

𝑚#, 𝑚-
𝑐

𝑏′

𝑚′
𝑐5 = 𝐄(𝑘,𝑚′)

𝑚′
𝑐5 = 𝐄(𝑘,𝑚′)

𝑐′′
𝑚55 = 𝐃(𝑘, 𝑐′′)

𝑐′′
𝑚55 = 𝐃(𝑘, 𝑐′′)



Encrypt-and-Authenticate

• Output: 𝑐? = (𝑐, 𝜏)
• Insecure in general 
– Consider the function 𝐓 that reveals the first bit of 𝑚; this 

is still UF-CMA, but now 𝑐5 is not even CPA secure
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Authenticate-then-Encrypt

• Output: 𝑐
• Insecure in general 
– Consider the function 𝐄′ that first encrypts 𝑚 using a CPA 

secure 𝐄 and then encodes each bit using two bits: 0 → 00
and 1 → 01 or 10

– Ciphertexts containing 11 are invalid
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Encrypt-then-Authenticate

• Output: 𝑐? = (𝑐, 𝜏)
• Always secure! 
– For any instantiation of secure 𝐄 and 𝐓
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A Brief Tour of 
Minicrypt 
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One-Way Functions
• Functions that are easy to compute but hard to 

invert

• Intimately connected to 𝑃 ≠ 𝑁𝑃
• Minicrypt: There are OWFs but no public-key 

cryptography is possible

Crypto 101
Data Privacy and Security

56

Domain Range

𝑓: easy

𝑓.$: hard



Pseudorandom Generators
• A PRG expands a truly random (but short) seed into a 

much longer sequence that looks random (but it’s 
not!)

• OWF⇔PRG⇔SKE (one-time)
• One-time secure SKE: 𝐄 𝑘,𝑚 = 𝐆(𝑘) ⊕𝑚
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𝐆 𝑠 = 𝑦 ∈ {0,1}1

𝑦 ←$ {0,1}1
?????



PRGs from OWFs
• Given 𝑦, which bits of 𝑥 are hard to compute?
– We know 𝑥 is hard to compute, but maybe one can always 

compute the first bit of 𝑥
• Hard-core bit: We say ℎ is hard core for 𝑓 if given 
𝑦 = 𝑓(𝑥) it is hard to find the bit ℎ(𝑥)
– Fundamental fact: Every OWF has a hard-core bit!

• If 𝑓 is a one-way permutation (OWP), 𝐆 𝑠 =
𝑓 𝑠 ||ℎ(𝑠) is a PRG with 1-bit stretch
– Amplification: Let 𝑠# = 𝑠, run 𝐆 𝑠$ = 𝑠$8-||𝑏$ for each 
𝑖 = 0,1,2, … and output 𝑏-, 𝑏,, …
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Pseudorandom Functions
• Consider a keyed function 𝐅(𝑘, 𝑥) mapping {0,1}1

into {0,1}1 (for a fixed key 𝑘)
• Hard to distinguish 𝐅(𝑘,8) from truly random 

function 𝐑(8)
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𝑘 ←$ {0,1}1

?????

𝐅(𝑘,8) 𝐑(8)



The GGM Tree
• PRG ⇒ PRF (other direction also true)
• Let 𝐆 𝑠 = (𝐆' 𝑠 , 𝐆$(𝑠)) be a length doubling PRG
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𝑘

𝐆' 𝐆$
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𝑥 = 010

1

𝐅(𝑘, 𝑥)



CPA-Secure SKE from PRFs
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F𝑘

𝑟

𝑐# = 𝑟

⊕𝑚

𝑐!

Any PRF
Random 
nonce

𝐅 𝑘, 𝑐- ⊕ 𝑐. = 𝑚



PRFs as MACs

• Every PRF is a fixed-length MAC
• Domain extension:
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F𝑘

𝑚

𝜏

Any PRF𝐓 𝑘,𝑚 = 𝐅(𝑘,𝑚)

𝐓′ 𝑘,𝑚 = 𝐅(𝑘, 𝐇(𝑚))

CR Hash Function



Feistel Networks
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𝐅(𝑘,�)

⊕

𝐿′ 𝑅′

𝑅𝐿

𝐅(𝑘,�)

⊕

𝑅𝐿

𝐿′ 𝑅′

Ψ; 𝐿, 𝑅 = 𝑅, 𝐿 ⊕ 𝐅 𝑘, 𝑅 Ψ;!- 𝐿′, 𝑅′ = 𝑅5⊕𝐅 𝑘, 𝐿5 , 𝐿′



Luby-Rackoff Theorems
• Define the 𝑟-round Feistel network Ψℱ[𝑟] as:

– Here, ℱ is a family of PRFs (independent keys)

• Fundamental Fact: If ℱ is a PRF, then Ψℱ[3] is a 
pseudorandom permutation (PRP)
– And Ψℱ[4] is a strong PRP (i.e., adversary can access 

inverse permutation)
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ΨA#,…,A& 𝐿, 𝑅 = ΨA& ΨA&%# … ΨA# 𝐿, 𝑅

ΨA#,…,A&
.$ 𝐿′, 𝑅′ = ΨA#

.$ ΨA'
.$ … ΨA&

.$ 𝐿′, 𝑅′


