DATA PRIVACY SECURIT

Prof. Daniele Venturi

Master's Degree in Data Science Sapienza University of Rome

RESEARCH CENTER FOR CYBER INTELLIGENCE AND INFORMATION SECURITY

Security and Cryptography

- Involves capabilities from **different areas**
	- Mathematics, physics, computer science, networking, law, and more
- How to build a **secure** system?
	- Many aspects to consider
	- **Cryptography:** The heart of any secure system
	- **Other aspects:** Physical security, logical security, security governance, security of code and implementations

Provable Security

- In the past: The **ancient art** of secure communication – Examples: Caesar cipher, ENIGMA, one-time pad
- Today: A **real science**
	- Thanks to pioneers such as Silvio Micali, Shafi Goldwasser, Oded Goldreich
	- Formal **definitions** and security **proofs**
- We will give a very **high-level** overview
	- Focus on applications

CHAPTER 1: Symmetric Cryptography

Confidential Communication

- Alice wants to send a message to Bob over some communication channel
- Eve can **listen** to the channel

Crypto 101

• How to protect the **message content**?

Secret-Key Encryption

• Assume Alice and Bob **share** a secret key

- $\textbf{Correctness: } \mathbf{D}(k, \mathbf{E}(k,m)) = m$
- **Kerckhoffs principle:** Security only based on the secrecy of the key (**algorithms are public**)

Perfect Secrecy

• Definition due to Claude Shannon (1949)

– Ciphertext **reveals nothing** about the plaintext

$$
Pr[M = m] = Pr[M = m|C = c]
$$

- One-time pad (binary version):
	- $-$ **E** $(k, m) = k \bigoplus m$
	- $-$ **D** $(k, c) = k \bigoplus c$
- Limitations:
	- **One key** per message, and message **as long as key**
	- Can be shown to be **inherent**

Computational Security

- Previous definition is information-theoretic
	- Holds even for **all-powerful** adversaries
	- Unconditional security, i.e. **no assumptions**!
- Natural relaxation: **Computational security**
	- Computationally bounded adversary (PPT Turing machine)
	- Adversary has negligible probability of success (e.g. 2^{-80})
- Advantage: **Single short key** for encrypting an **unbounded** number of messages

AES (Rijndael)

- A widely used **blockcipher**
	- Created to replace DES
- NIST call for proposals in 1997
	- Evaluation criteria: Security, costs, intellectual property, implementation and execution, versatility, key agility, simplicity
- Two rounds were performed, 15 algorithms were selected in the first and 5 in the second
	- NIST completed the evaluation on October 2, 2000 and selected **Rijndael (Daemen + Rijmen)**

AES Structure

- Block length of 128 bits (16 bytes) – Three key sizes: 128, 192, or 256 bits
- # of rounds: 10, 12, or 14
	- $-$ Let $s_{i,j}^{(\rm in)}$ be 1 byte of the **state** at a given round (initially the first plaintext block)
	- $-$ The secret key is used to compute the $\boldsymbol{\mathsf{sub-keys}}\ k_{i,j}^{(V)}$ (r) , one for each round r
	- In each round state subject to 4 operations: SubBytes, ShiftRows, MixColumns, AddRoundKey

Arithmetic in $GF(2^8)$

- AES uses the Galois Field $GF(2^8)$
	- -1 byte \Rightarrow 8 bits \Rightarrow 2 hexadecimal digits
	- Example: $[01101100]_2 = [6C]_{16}$
- Interpret each byte as the binary coefficients of a degree-7 polynomial
	- Sum of 2 polynomials is still a degree-7 polynomial
	- Multiplication might increase the degree
	- Modular reduction w.r.t. **irreducible polynomial**

$$
h(X) = X^8 + X^4 + X^3 + X + 1
$$

Arithmetic in $GF(2^8)$: Example

- $[53]_{16}$ $[CA]_{16} = [01]_{16}$ in $GF(2^8)$ $[53]_{16} = X^6 + X^4 + X + 1$ $-[CA]_{16} = X^7 + X^6 + X^3 + X$
- $[53]_{16}$ $[CA]_{16} = X^{13} + X^{12} + X^{11} + X^{10} + X^{9} + X^{10} + X^{$ $X^8 + X^6 + X^5 + X^4 + X^3 + X^2 + X$
	- $-$ By performing **long division**, it is easy to check that X^{13} + $X^{12} + X^{11} + X^{10} + X^9 + X^8 + X^6 + X^5 + X^4 + X^3 +$ $X^2 + X \mod X^8 + X^4 + X^3 + X + 1$ gives $X^5 + X^4 +$ $X^3 + X + 1$ with **remainder** 1

AES S-BOX (1/2)

- A simple **substitution box** (lookup table)
- It maps 8-bit inputs to 8-bit outputs
	- Let $x = [x_7, x_6, x_5, x_4, x_3, x_2, x_1, x_0]_2$ be the input

Data Privacy and Security

 $-$ Map x into its **multiplicative inverse** z modulo $h(X)$ and apply an **affine transformation**:

AES S-BOX (2/2)

- Input: [68]
- Output: [45]

ShiftRows

 $S_{0,j}^{(2)}$ (2) $S_{1,j}^{(2)}$ (2) $S_{2,j}^{(2)}$ (2) S_3 (2) = $S_{0,j}^{(1)}$ (1) $S_{1,j-1}^{(1)}$ (1) $S_{2,j-2}^{(1)}$ (1) $S_{3,j-3}^{\setminus}$ (1)

Data Privacy and Security

Crypto 101

MixColumns

RESEARCH AND INFORMATION SECURITY

AddRoundKey

Crypto 101

Key Schedule (1/2)

- Takes the original key k (128, 192, or 256 bits) and **derives sub-keys** $k^{(r)}$, for $r = 10,12,14$
- When $|k| = 128$ and $r = 10$:
	- Key expansion array W with 44 32-bit elements
	- $W[0], ..., W[3]$ equal to the original key (used for initial XOR with the plaintext $-$ key whitening)
	- $-W[4i] = W[4(i-1)] + g(W[4i-1])$
	- $W[4i + j] = W[4i + j 1] + W[4(i 1) + j]$
	- $-$ g is a non-linear function (based on the S-Box)

Key Schedule (2/2)

Security of AES

- No **practical attack** is known
	- Best attacks break AES with 7 rounds (128-bit key), 8 rounds (192-bit key) and 9 rounds (256-bit key)
- Brute force is out of reach: $3.4 \cdot 10^{38}$ possible combinations (128-bit key)
	- Best brute force attack took 5 years to crack a 64-bit key using thousands of CPUs
- But AES comes with **no proof of security**!

Modes of Operation

- Block ciphers encrypt **fixed size blocks** – E.g., AES block size is 128 bits
- Plaintext messages may have an **arbitrary length**: Use a **mode of operation**
	- Segment data & encrypt and chain multiple blocks
	- Might require to pad messages to make their length a multiple of the block size
- 4 modes defined for DES in ANSI standard "ANSI X3.106-1983 Modes of Use"

ECB Mode

CBC Mode

AND INFORMATION SECURITY

CFB Mode

 $\forall i: c_i = m_i \oplus \mathbf{E}(k, c_{i-1})$

OFB Mode

 $\forall i: c_i = m_i \oplus E(k, k_{i-1})$

CTR Mode

 $\forall i: c_i = m_i \oplus \mathbf{E}(k, (\alpha + i) \text{ mod } 2^n)$

Comparison

• ECB: Identical plaintext blocks are encrypted into **identical** ciphertext blocks

Security of Block Ciphers

- Rule of thumb (Shannon): A good block cipher should have both **confusion** and **diffusion**
	- Confusion means there is a **complex relation** between ciphertext and plaintext
	- Diffusion roughly means that a **one-bit** flip in the plaintext changes **each bit** of the ciphertext with probability $\approx 1/2$
- But can we define more **formally** what it means for a cipher to be secure?

One-Time Security

• The indistinguishability paradigm

$$
c = \mathbf{E}(k, m_b)
$$

- Hard to guess b w.p. better than $1/2$
- No encryption/decryption capabilities

Chosen-Plaintext Attacks (CPA) Security

- Adversary can ask **encryption** queries
- Requires **randomness**!

Authenticated Communication

- Alice wants to send a message to Bob over some communication channel
- Eve can **modify** the message
- How to protect the message **authenticity**?

Message Authentication Codes

• Assume Alice and Bob **share** a secret key

- **Correctness:** By definition
- **Security:** Should be hard to **forge** a tag on a message without knowing the key

Unforgeability

- Adversary wins iff (m, τ) is **valid** and m is **fresh** (i.e. not asked during tag queries)
	- Reply attacks not covered by definition

CBC-MAC

- Use AES in CBC mode
- Fix $IV = 0^n$ and output **only** the last block
	- I.e., for $m = (m_1, ..., m_t)$ where $m_i \in \{0,1\}^n$ compute $\tau_i = \mathbf{F}(k, \tau_{i-1} \oplus m_i)$, where $\tau_0 = IV$, and return $\tau = \tau_t$
	- Only secure for **fixed length** messages, for variable length messages need to encrypt the output with an indepedent key (i.e. $\tau' = \mathbf{F}(k', \tau)$)
	- Insecure in case **all blocks** are output

Why Fixed Length?

- Suppose we use CBC-MAC to autenticate **variable length** messages
- Adversary picks arbitrary $m_1, m_2 \in \{0,1\}^n$ and obtains tags on m_1 and $m_2 \bigoplus \tau_1$

$$
\tau_1 = \mathbf{F}(k, m_1); \tau_2 = \mathbf{F}(k, m_2 \oplus \tau_1)
$$

• Output forgery $m^* = m_1 || m_2$ and $\tau^* = \tau_2$

$$
\tau_2 = \mathbf{F}(k, m_2 \oplus \tau_1) = \mathbf{F}(k, \mathbf{F}(k, m_1) \oplus m_2))
$$

Why Only the Last Block?

- Suppose CBC-MAC outputs **all blocks**
- Adversary picks arbitrary $m_1, m_2 \in \{0,1\}^n$ and obtains tag $\tau_1||\tau_2$ on $m_1||m_2$

$$
\tau_1 = \mathbf{F}(k, m_1); \tau_2 = \mathbf{F}(k, m_2 \oplus \tau_1)
$$

• Output forgery $m^* = \tau_1 \oplus m_2 || \tau_2 \oplus m_1$ and $\tau^* =$ $\tau_2||\tau_1$

$$
\mathbf{F}(k, \mathbf{F}(k, m_2 \oplus \tau_1) \oplus \tau_2 \oplus m_1) = \mathbf{F}(k, m_1)
$$

Why not a Random IV?

- Suppose that for each tag we sample **random** $\tau_0 \leftarrow_s \{0,1\}^n$ and output (τ_0, τ_t) as tag – Here, t is the number of *n*-bit blocks in a message
- Adversary picks arbitrary $m \in \{0,1\}^n$ and obtains tag (τ_0, τ_1) where $\tau_1 = \mathbf{F}(k, \tau_0 \oplus m)$
- Output forgery $m^* = \tau_0$ and $\tau^* = (m, \tau_1)$

Cryptographic Hashing

- Security properties:
	- $-$ **One wayness:** Given y, find x such that $H(x) = y$
	- **Weak collision resistance:** Given x, find $x' \neq x$ s.t. $\mathbf{H}(x) =$ $H(x')$
	- **Strong collision resistance:** Find x and x' s.t. $\mathbf{H}(x) =$ $H(x')$ but $x \neq x'$

Brute Force Attacks

- Assume to be a **random hash function**
- **One wayness:** Given y choose $x_1, ..., x_q$ and hope that $\mathbf{H}(x_i) = y$ for some $i \in [q]$

– Success probability: $\leq q/L$ (union bound)

- **Weak collision resistance:** Similar to above
- **Strong collision resistance:** Choose distinct $x_1, ..., x_d$ and hope to find a collision

$$
\Pr[\exists i \neq j : y_i = y_j] \le \sum_{i \neq j} \Pr[y_i = y_j] \le \frac{q^2}{2L}
$$

The Birthday Paradox

- Suppose $y_1, ..., y_q$ are random
	- Let $NoColl_i$ be the event that **no collision** occurs within y_1, \ldots, y_i
	- $Pr[NoColl_{i+1} | NoColl_{i}] = (1 i/L)$

$$
\Pr[NoColl_q] = \prod_{i=1}^{q-1} \left(1 - \frac{i}{L}\right) \le \prod_{i=1}^{q-1} e^{-\frac{i}{L}} = e^{-\sum_{i=1}^{q-1} \frac{i}{L}}
$$

= $e^{-q(q-1)/2L}$

- Thus, $1 Pr[NoColl_q] \geq \frac{q(q-1)}{q!}$
	- Success w.p. $\geq 1/2$ whenever $q \approx \sqrt{L}$

• Let cmps be a compression function outputting ℓ' bits out of ℓ bits

- cmps is collision resistant, but domain is fixed

• A construction due to Merkle and Damgaard yields a collision resistant hash function for **arbitrary** domains

Davies-Meyer

• Compression functions can be constructed from **block ciphers**

$$
cmps(x_1, x_2) = x_2 \oplus AES(x_1, x_2)
$$

- Analysis requires to assume idealization of AES
	- Because the input is used **as the key**
	- Ideal cipher: Block-cipher as a **random permutation** for **every choice** of the key

Hash & MAC

• Typical (but **flawed**) construction of a MAC based on a hash function

$$
\mathbf{T}(k,m) = \mathbf{H}(k||m)
$$

- Attack based on **length extension** (for Merkle-Damgaard-based constructions)
	- Let $m^* = m||d||m_{t+1}$ and tag $\tau^* =$ **cmps**(cmps(τ || m_{t+1})|| $d + 2$) for $\tau = H(k||m)$ and $d =$ $|m|$

HMAC

• Solution: Hash **twice**!

$\textbf{HMAC}(k, m) = \textbf{H}(k^+ \oplus opad||\textbf{H}(k^+ \oplus ipad||m))$

- $-k^+$: Key k padded with zeroes to the left
- $-$ o $pad: 5C5C... 5C$ (in HEX)
- $-$ *ipad*: 3636 ... 36 (in HEX)
- Internet **standard** RFC 2104
- Can work with any of SHA-2 or SHA-3

SHA-3

- 2005-2006: NIST thinks about SHA-3 contest
	- MD5 and SHA-1 were damaged by attacks
	- SHA-2 based on the same principles
- October 2008: Deadline for proposals
	- More efficient than SHA-2
	- Output lengths: 224, 256, 384, 512 bits
	- Security: collision resistant (weak and strong)
- October 2, 2012: NIST announces **Keccak** as SHA-3 winner

The Sponge Construction

- Can be used as a stream cipher, or a MAC too
- Security for **ideal** f is roughly $q(q 1)/2^{c+1}$

$$
-q=\text{\# of calls to } f
$$

Inside Keccak

- Absorbing: The message blocks are padded and processed
- **Squeezing:** An output of configurable length is produced
- Parameters:
	- $b = r + c$ it's the **state width**, with $b = 25 \cdot 2^{l}$ for values $l = 0, 1, ..., 6$
	- r is the **bit rate** (length of single blocks)
	- $-c$ is the **capacity** (security parameter)
	- $-$ SHA-3: Always $b = 1600$

The Keccak f-Permutation

- A **permutation** over *b* bits
- Variable number of rounds $r = 12 + 2l$ $-$ SHA-3: $l = 6$ and thus $r = 24$
- The functions θ , ρ , π , ι use XOR, AND, and NOT

Combining Encryption and Authentication

- Eand authentication **separate goals**
- Can we achieve **both** at the same time?
- Intuitively we want that both
	- The ciphertext should hide the plaintext
	- It should be hard to compute a ciphertext without knowing the secret key
- This is called **authenticated encryption**

Chosen-Ciphertext Attacks (CCA) Security

• Both **encryption** and **decryption** queries

– Cannot query on challenge ciphertext

• Captures **non-malleability**

Encrypt-and-Authenticate

- Output: $c' = (c, \tau)$
- Insecure **in general**
	- $-$ Consider the function **T** that **reveals** the first bit of m ; this is **still** UF-CMA, but now c' is **not** even CPA secure

Authenticate-then-Encrypt

- Output: c
- Insecure **in general**
	- Consider the function E' that first encrypts m using a CPA secure **E** and then **encodes** each bit using two bits: $0 \rightarrow 00$ and $1 \rightarrow 01$ or 10
	- Ciphertexts containing 11 are **invalid**

Encrypt-then-Authenticate

• Output:
$$
c' = (c, \tau)
$$

- Always secure!
	- $-$ For any instantiation of secure E and T

A Brief Tour of Minicrypt

One-Way Functions

• Functions that are **easy to compute** but **hard to invert**

- Intimately connected to $P \neq NP$
- Minicrypt: There are OWFs but **no public-key cryptography** is possible

Pseudorandom Generators

• A PRG expands a truly random (but **short**) seed into a **much longer** sequence that **looks random** (but it's not!)

- OWF⇔PRG⇔SKE (one-time)
- One-time secure SKE: $\mathbf{E}(k,m) = \mathbf{G}(k) \bigoplus m$

PRGs from OWFs

- Given y , which bits of x are **hard to compute**?
	- We know x is hard to compute, but maybe one can always compute **the first bit** of
- **Hard-core bit:** We say h is hard core for f if given $y = f(x)$ it is hard to find the bit $h(x)$

– **Fundamental fact:** Every OWF has a hard-core bit!

- If f is a one-way **permutation** (OWP), $G(s) =$ $f(s)||h(s)$ is a PRG with **1-bit stretch**
	- $-$ **Amplification:** Let $s_0 = s$, run $\mathbf{G}(s_i) = s_{i+1} || b_i$ for each $i = 0,1,2, ...$ and output $b_1, b_2, ...$

Pseudorandom Functions

- Consider a keyed function $\mathbf{F}(k, x)$ mapping $\{0,1\}^n$ into $\{0,1\}^n$ (for a fixed key k)
- Hard to distinguish $F(k, \cdot)$ from **truly random function** $R(\cdot)$

The GGM Tree

- PRG \Rightarrow PRF (other direction also true)
- Let $\mathbf{G}(s) = (\mathbf{G}_0(s), \mathbf{G}_1(s))$ be a length doubling PRG

CPA-Secure SKE from PRFs

Data Privacy and Security

RESEARCH AND INFORMATION SECURIT

PRFs as MACs

$$
\mathbf{T}'(k,m) = \mathbf{F}(k, \mathbf{H}(m))
$$

Feistel Networks

Luby-Rackoff Theorems

Define the r-round **Feistel network** $\Psi_{\mathcal{F}}[r]$ as:

$$
\Psi_{F_1,\dots,F_r}(L,R) = \Psi_{F_r} \left(\Psi_{F_{r-1}} \left(\dots \left(\Psi_{F_1} (L,R) \right) \right) \right)
$$

$$
\Psi_{F_1,\dots,F_r}^{-1}(L',R') = \Psi_{F_1}^{-1} \left(\Psi_{F_2}^{-1} \left(\dots \left(\Psi_{F_r}^{-1}(L',R') \right) \right) \right)
$$

– Here, ℱ is a family of PRFs (**independent** keys)

- Fundamental Fact: If $\mathcal F$ is a PRF, then $\Psi_{\mathcal F}[3]$ is a **pseudorandom permutation** (PRP)
	- $-$ And $\Psi_{\mathcal{F}}[4]$ is a **strong PRP** (i.e., adversary can access **inverse** permutation)

