DATA PRIVACY AND SECURITY

Prof. Daniele Venturi

Master's Degree in Data Science Sapienza University of Rome

Research Center for Cyber Intelligence and information Security

Security and Cryptography

- Involves capabilities from different areas
 - Mathematics, physics, computer science, networking, law, and more
- How to build a **secure** system?
 - Many aspects to consider
 - <u>Cryptography</u>: The heart of any secure system
 - <u>Other aspects</u>: Physical security, logical security, security governance, security of code and implementations

Provable Security

- In the past: The ancient art of secure communication
 Examples: Caesar cipher, ENIGMA, one-time pad
- Today: A real science
 - Thanks to pioneers such as Silvio Micali, Shafi Goldwasser,
 Oded Goldreich
 - Formal definitions and security proofs
- We will give a very **high-level** overview
 - Focus on applications

<u>CHAPTER 1:</u> Symmetric Cryptography

Data Privacy and Security

4

Confidential Communication

- Alice wants to send a message to Bob over some communication channel
- Eve can **listen** to the channel

Crypto 101

How to protect the message content?

Secret-Key Encryption

Assume Alice and Bob share a secret key

- **<u>Correctness</u>:** D(k, E(k, m)) = m
- Kerckhoffs principle: Security only based on the secrecy of the key (algorithms are public)

Perfect Secrecy

• Definition due to Claude Shannon (1949)

Ciphertext reveals nothing about the plaintext

$$\Pr[M = m] = \Pr[M = m | \mathcal{C} = c]$$

- One-time pad (binary version):
 - $-\mathbf{E}(k,m) = k \oplus m$
 - $-\mathbf{D}(k,c)=k\oplus c$
- Limitations:
 - One key per message, and message as long as key
 - Can be shown to be inherent

Computational Security

- Previous definition is information-theoretic
 - Holds even for all-powerful adversaries
 - Unconditional security, i.e. no assumptions!
- Natural relaxation: **Computational security**
 - Computationally bounded adversary (PPT Turing machine)
 - Adversary has negligible probability of success (e.g. 2^{-80})
- Advantage: Single short key for encrypting an unbounded number of messages

AES (Rijndael)

• A widely used **blockcipher**

Created to replace DES

- NIST call for proposals in 1997
 - Evaluation criteria: Security, costs, intellectual property, implementation and execution, versatility, key agility, simplicity
- Two rounds were performed, 15 algorithms were selected in the first and 5 in the second
 - NIST completed the evaluation on October 2, 2000 and selected Rijndael (Daemen + Rijmen)

AES Structure

- Block length of 128 bits (16 bytes)
 Three key sizes: 128, 192, or 256 bits
- # of rounds: 10, 12, or 14
 - Let $s_{i,j}^{(in)}$ be 1 byte of the state at a given round (initially the first plaintext block)
 - The secret key is used to compute the **sub-keys** $k_{i,j}^{(r)}$, one for each round r
 - In each round state subject to 4 operations: SubBytes,
 ShiftRows, MixColumns, AddRoundKey

Arithmetic in $GF(2^8)$

- AES uses the Galois Field $GF(2^8)$
 - 1 byte \Rightarrow 8 bits \Rightarrow 2 hexadecimal digits
 - Example: $[01101100]_2 = [6C]_{16}$
- Interpret each byte as the binary coefficients of a degree-7 polynomial
 - Sum of 2 polynomials is still a degree-7 polynomial
 - Multiplication might increase the degree
 - Modular reduction w.r.t. irreducible polynomial

$$h(X) = X^8 + X^4 + X^3 + X + 1$$

Arithmetic in $GF(2^8)$: Example

- $[53]_{16} \cdot [CA]_{16} = [01]_{16}$ in $GF(2^8)$ - $[53]_{16} = X^6 + X^4 + X + 1$ - $[CA]_{16} = X^7 + X^6 + X^3 + X$
- $[53]_{16} \cdot [CA]_{16} = X^{13} + X^{12} + X^{11} + X^{10} + X^9 + X^8 + X^6 + X^5 + X^4 + X^3 + X^2 + X$
 - By performing long division, it is easy to check that $X^{13} + X^{12} + X^{11} + X^{10} + X^9 + X^8 + X^6 + X^5 + X^4 + X^3 + X^2 + X \mod X^8 + X^4 + X^3 + X + 1$ gives $X^5 + X^4 + X^3 + X + 1$ with remainder 1

AES S-BOX (1/2)

- A simple **substitution box** (lookup table)
- It maps 8-bit inputs to 8-bit outputs
 - Let $x = [x_7, x_6, x_5, x_4, x_3, x_2, x_1, x_0]_2$ be the input
 - Map x into its **multiplicative inverse** z modulo h(X) and apply an **affine transformation**:

AES S-BOX (2/2)

- Input: [68]
- Output: [45]

	I	У															
		0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
	0	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	c9	7d	fa	59	47	fO	ad	d4	a2	af	9c	a4	72	c0
	2	b7	fd	93	26	36	3f	£7	cc	34	a5	e5	f1	71	d8	31	15
	3	04	c7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
	4	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e3	2f	84
	5	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
x	6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3c	9f	a8
	7	51	a3	40	8f	92	9d	38	£5	bc	b6	da	21	10	ff	£3	d2
	8	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	b	e7	c8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	С	ba	78	25	2e	1c	a6	b4	c6	e8	dd	74	1f	4b	bd	8b	8a
	d	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
	е	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
	f	8c	a1	89	0d	bf	e6	42	68	41	99	2d	0f	b0	54	bb	16

ShiftRows

 $s_{0,j}^{(1)}$ (S`_{0,j} $s_{1,j}^{(2)}$ $S_{1,j-1}^{(1)}$ $s_{2,j}^{(2)}$ $S_{2,j-2}^{(1)}$ (2)· S_{3,} $S_{3,j-3}^{(-)}$

Crypto 101

MixColumns

AddRoundKey

Crypto 101

Key Schedule (1/2)

- Takes the original key k (128, 192, or 256 bits) and derives sub-keys $k^{(r)}$, for r = 10,12,14
- When |k| = 128 and r = 10:
 - Key expansion array W with 44 32-bit elements
 - $-W[0], \dots, W[3]$ equal to the original key (used for initial XOR with the plaintext – key whitening)
 - -W[4i] = W[4(i-1)] + g(W[4i-1])
 - -W[4i+j] = W[4i+j-1] + W[4(i-1)+j]
 - -q is a non-linear function (based on the S-Box)

Key Schedule (2/2)

Data Privacy and Security

IS SAPIENZA

Security of AES

- No practical attack is known
 - Best attacks break AES with 7 rounds (128-bit key), 8 rounds (192-bit key) and 9 rounds (256-bit key)
- Brute force is out of reach: 3,4 · 10³⁸ possible combinations (128-bit key)
 - Best brute force attack took 5 years to crack a 64-bit key using thousands of CPUs
- But AES comes with **no proof of security**!

Modes of Operation

- Block ciphers encrypt fixed size blocks
 E.g., AES block size is 128 bits
- Plaintext messages may have an arbitrary length:
 Use a mode of operation
 - Segment data & encrypt and chain multiple blocks
 - Might require to pad messages to make their length a multiple of the block size
- 4 modes defined for DES in ANSI standard "ANSI X3.106-1983 Modes of Use"

ECB Mode

CBC Mode

AND INFORMATION SECURITY

CFB Mode

...

 $\forall i: c_i = m_i \bigoplus \mathbf{E}(k, c_{i-1})$

OFB Mode

...

 $\forall i: c_i = m_i \bigoplus \mathbf{E}(k, k_{i-1})$

CTR Mode

 $\forall i: c_i = m_i \bigoplus \mathbf{E}(k, (\alpha + i) \bmod 2^n)$

Comparison

• ECB: Identical plaintext blocks are encrypted into identical ciphertext blocks

Mode	∥Enc	 Dec	\$Access	Security
ECB	\checkmark	\checkmark	\checkmark	X
CBC	X	\checkmark	\checkmark	\checkmark
CFB	X	\checkmark	\checkmark	\checkmark
OFB	X	X	X	\checkmark
CTR	\checkmark	\checkmark	\checkmark	\checkmark

Security of Block Ciphers

- Rule of thumb (Shannon): A good block cipher should have both confusion and diffusion
 - Confusion means there is a complex relation between ciphertext and plaintext
 - Diffusion roughly means that a **one-bit** flip in the plaintext changes **each bit** of the ciphertext with probability $\approx 1/2$
- But can we define more **formally** what it means for a cipher to be secure?

One-Time Security

• The indistinguishability paradigm

$$c = \mathbf{E}(k, m_b)$$

- Hard to guess b w.p. better than 1/2
- No encryption/decryption capabilities

Chosen-Plaintext Attacks (CPA) Security

- Adversary can ask encryption queries
- Requires **randomness**!

Authenticated Communication

- Alice wants to send a message to Bob over some communication channel
- Eve can **modify** the message
- How to protect the message authenticity?

Message Authentication Codes

• Assume Alice and Bob share a secret key

- **Correctness:** By definition
- <u>Security</u>: Should be hard to forge a tag on a message without knowing the key

Unforgeability

- Adversary wins iff (m, τ) is valid and m is fresh (i.e. not asked during tag queries)
 - Reply attacks not covered by definition

CBC-MAC

- Use AES in CBC mode
- Fix $IV = 0^n$ and output **only** the last block
 - I.e., for $m = (m_1, ..., m_t)$ where $m_i \in \{0,1\}^n$ compute $\tau_i = \mathbf{F}(k, \tau_{i-1} \bigoplus m_i)$, where $\tau_0 = IV$, and return $\tau = \tau_t$
 - Only secure for **fixed length** messages, for variable length messages need to encrypt the output with an indepedent key (i.e. $\tau' = \mathbf{F}(k', \tau)$)
 - Insecure in case all blocks are output

Data Privacy and Security

Crypto 101

Why Fixed Length?

- Suppose we use CBC-MAC to autenticate variable length messages
- Adversary picks arbitrary $m_1, m_2 \in \{0,1\}^n$ and obtains tags on m_1 and $m_2 \bigoplus \tau_1$

$$\tau_1 = \mathbf{F}(k, m_1); \tau_2 = \mathbf{F}(k, m_2 \oplus \tau_1)$$

• Output forgery $m^* = m_1 || m_2$ and $\tau^* = \tau_2$

$$\tau_2 = \mathbf{F}(k, m_2 \oplus \tau_1) = \mathbf{F}(k, \mathbf{F}(k, m_1) \oplus m_2))$$

Why Only the Last Block?

- Suppose CBC-MAC outputs all blocks
- Adversary picks arbitrary $m_1, m_2 \in \{0,1\}^n$ and obtains tag $\tau_1 || \tau_2$ on $m_1 || m_2$

$$\tau_1 = \mathbf{F}(k, m_1); \tau_2 = \mathbf{F}(k, m_2 \oplus \tau_1)$$

• Output forgery $m^* = \tau_1 \oplus m_2 || \tau_2 \oplus m_1$ and $\tau^* = \tau_2 || \tau_1$

$$\mathbf{F}(k,\mathbf{F}(k,m_2\oplus\tau_1)\oplus\tau_2\oplus m_1)=\mathbf{F}(k,m_1)$$

Why not a Random IV?

- Suppose that for each tag we sample random
 τ₀ ←_{\$} {0,1}ⁿ and output (τ₀, τ_t) as tag
 – Here, t is the number of n-bit blocks in a message
- Adversary picks arbitrary $m \in \{0,1\}^n$ and obtains tag (τ_0, τ_1) where $\tau_1 = \mathbf{F}(k, \tau_0 \oplus m)$
- Output forgery $m^* = \tau_0$ and $\tau^* = (m, \tau_1)$

Cryptographic Hashing

- Security properties:
 - One wayness: Given y, find x such that $\mathbf{H}(x) = y$
 - Weak collision resistance: Given x, find $x' \neq x$ s.t. $\mathbf{H}(x) = \mathbf{H}(x')$
 - Strong collision resistance: Find x and x' s.t. $\mathbf{H}(x) = \mathbf{H}(x')$ but $x \neq x'$

Brute Force Attacks

- Assume **H** to be a random hash function
- One wayness: Given y choose $x_1, ..., x_q$ and hope that $\mathbf{H}(x_i) = y$ for some $i \in [q]$

- Success probability: $\leq q/L$ (union bound)

- Weak collision resistance: Similar to above
- Strong collision resistance: Choose distinct x₁, ..., x_q and hope to find a collision

$$\Pr\left[\exists i \neq j : y_i = y_j\right] \le \sum_{i \neq j} \Pr\left[y_i = y_j\right] \le \frac{q^2}{2L}$$

The Birthday Paradox

- Suppose y_1, \dots, y_q are **random**
 - Let $NoColl_i$ be the event that **no collision** occurs within y_1, \dots, y_i
 - $-\Pr[NoColl_{i+1}|NoColl_i] = (1 i/L)$

$$\Pr[NoColl_q] = \prod_{i=1}^{q-1} \left(1 - \frac{i}{L}\right) \le \prod_{i=1}^{q-1} e^{-\frac{i}{L}} = e^{-\sum_{i=1}^{q-1} \frac{i}{L}}$$
$$= e^{-q(q-1)/2L}$$

- Thus, $1 \Pr[NoColl_q] \ge \frac{q(q-1)}{4L}$
 - Success w.p. $\geq 1/2$ whenever $q \approx \sqrt{L}$

 Let cmps be a compression function outputting ℓ' bits out of ℓ bits

– cmps is collision resistant, but domain is fixed

A construction due to Merkle and Damgaard yields a collision resistant hash function for arbitrary domains

Davies-Meyer

 Compression functions can be constructed from block ciphers

$$\mathbf{cmps}(x_1, x_2) = x_2 \oplus \mathbf{AES}(x_1, x_2)$$

- Analysis requires to assume idealization of AES
 - Because the input is used as the key
 - Ideal cipher: Block-cipher as a random permutation for every choice of the key

Hash & MAC

 Typical (but flawed) construction of a MAC based on a hash function

$$\mathbf{T}(k,m) = \mathbf{H}(k||m)$$

- Attack based on length extension (for Merkle-Damgaard-based constructions)
 - Let $m^* = m||d||m_{t+1}$ and tag $\tau^* =$ **cmps**(**cmps**($\tau ||m_{t+1})||d + 2$) for $\tau = \mathbf{H}(k||m)$ and d = |m|

HMAC

• Solution: Hash twice!

$\mathbf{HMAC}(k,m) = \mathbf{H}(k^+ \oplus opad||\mathbf{H}(k^+ \oplus ipad||m))$

- $-k^+$: Key k padded with zeroes to the left
- opad: 5C5C ... 5C (in HEX)
- *ipad*: 3636 ... 36 (in HEX)
- Internet standard RFC 2104
- Can work with any of SHA-2 or SHA-3

SHA-3

- 2005-2006: NIST thinks about SHA-3 contest
 - MD5 and SHA-1 were damaged by attacks
 - SHA-2 based on the same principles
- October 2008: Deadline for proposals
 - More efficient than SHA-2
 - Output lengths: 224, 256, 384, 512 bits
 - Security: collision resistant (weak and strong)
- October 2, 2012: NIST announces Keccak as SHA-3 winner

The Sponge Construction

- Can be used as a stream cipher, or a MAC too
- Security for ideal f is roughly q(q 1)/2^{c+1}
 q = # of calls to f

Data Privacy and Security

SADI

Inside Keccak

- <u>Absorbing</u>: The message blocks are padded and processed
- <u>Squeezing</u>: An output of configurable length is produced
- Parameters:
 - -b = r + c it's the **state width**, with $b = 25 \cdot 2^{l}$ for values l = 0, 1, ..., 6
 - -r is the **bit rate** (length of single blocks)
 - *c* is the **capacity** (security parameter)
 - SHA-3: Always b = 1600

The Keccak *f*-Permutation

- A **permutation** over *b* bits
- Variable number of rounds r = 12 + 2l
 SHA-3: l = 6 and thus r = 24
- The functions θ , ρ , π , ι use XOR, AND, and NOT

Combining Encryption and Authentication

- Eand authentication **separate goals**
- Can we achieve **both** at the same time?
- Intuitively we want that both
 - The ciphertext should hide the plaintext
 - It should be hard to compute a ciphertext without knowing the secret key
- This is called **authenticated encryption**

Chosen-Ciphertext Attacks (CCA) Security

Both encryption and decryption queries

Cannot query on challenge ciphertext

Captures non-malleability

Encrypt-and-Authenticate

- Output: $c' = (c, \tau)$
- Insecure in general
 - Consider the function **T** that **reveals** the first bit of m; this is **still** UF-CMA, but now c' is **not** even CPA secure

Authenticate-then-Encrypt

- Output: *c*
- Insecure in general
 - Consider the function **E**' that first encrypts m using a CPA secure **E** and then **encodes** each bit using two bits: $0 \rightarrow 00$ and $1 \rightarrow 01$ or 10
 - Ciphertexts containing 11 are invalid

Encrypt-then-Authenticate

• Output:
$$c' = (c, \tau)$$

- Always secure!
 - For any instantiation of secure E and T

A Brief Tour of Minicrypt

RESEARCH CENTER FOR CYBER INTELLIGENCE AND INFORMATION SECURITY

Crypto 101

One-Way Functions

Functions that are easy to compute but hard to invert

- Intimately connected to $P \neq NP$
- Minicrypt: There are OWFs but no public-key cryptography is possible

Pseudorandom Generators

 A PRG expands a truly random (but short) seed into a much longer sequence that looks random (but it's not!)

- OWF⇔PRG⇔SKE (one-time)
- One-time secure SKE: $\mathbf{E}(k,m) = \mathbf{G}(k) \oplus m$

PRGs from OWFs

- Given *y*, which bits of *x* are hard to compute?
 - We know x is hard to compute, but maybe one can always compute the first bit of x
- Hard-core bit: We say h is hard core for f if given y = f(x) it is hard to find the bit h(x)

– Fundamental fact: Every OWF has a hard-core bit!

- If f is a one-way **permutation** (OWP), $\mathbf{G}(s) = f(s)||h(s)$ is a PRG with **1-bit stretch**
 - Amplification: Let $s_0 = s$, run $\mathbf{G}(s_i) = s_{i+1} || b_i$ for each i = 0, 1, 2, ... and output $b_1, b_2, ...$

Pseudorandom Functions

- Consider a keyed function F(k, x) mapping {0,1}ⁿ
 into {0,1}ⁿ (for a fixed key k)
- Hard to distinguish F(k,·) from truly random function R(·)

The GGM Tree

- $PRG \Rightarrow PRF$ (other direction also true)
- Let $\mathbf{G}(s) = (\mathbf{G}_0(s), \mathbf{G}_1(s))$ be a length doubling PRG

RESEARC

CPA-Secure SKE from PRFs

Data Privacy and Security

RESEARCH AND INFORMATION SEC

PRFs as MACs

$$\mathbf{T}'(k,m) = \mathbf{F}(k,\mathbf{H}(m))$$

Feistel Networks

Data Privacy and Security

IS SAPIENZA

63

Luby-Rackoff Theorems

• Define the *r*-round **Feistel network** $\Psi_{\mathcal{F}}[r]$ as:

$$\Psi_{F_{1},...,F_{r}}(L,R) = \Psi_{F_{r}}\left(\Psi_{F_{r-1}}\left(...\left(\Psi_{F_{1}}(L,R)\right)\right)\right)$$
$$\Psi_{F_{1},...,F_{r}}^{-1}(L',R') = \Psi_{F_{1}}^{-1}\left(\Psi_{F_{2}}^{-1}\left(...\left(\Psi_{F_{r}}^{-1}(L',R')\right)\right)\right)$$

– Here, \mathcal{F} is a family of PRFs (independent keys)

• <u>Fundamental Fact</u>: If \mathcal{F} is a PRF, then $\Psi_{\mathcal{F}}[3]$ is a **pseudorandom permutation** (PRP)

- And $\Psi_{\mathcal{F}}[4]$ is a **strong PRP** (i.e., adversary can access **inverse** permutation)

