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Number Theory
“Cubum autem in duos cubos, aut quadratoquadratum in duos 
quadratoquadratos, et generaliter nullam in infinitum ultra 
quadratum potestatem in duos eiusdem nominis fas est divider 
cuius rei demonstrationem mirabilem sane detexi. Hanc marginis
exiguitas non caperet.”—Fermat’s Last Theorem
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Modular Arithmetic
• Quotient, reminder and gcd

𝑎	mod	𝑛 = 𝑟 ⇒ 𝑎 = 𝑛𝑞 + 𝑟
– E.g., 2	mod	7 = 2; 8	mod	7 = 1

• Congruences: 𝑎 ≡ 𝑏	mod	𝑛 if 𝑛 divides 𝑎 − 𝑏
• (ℤ!, +,2) is a ring
– If gcd 𝑎, 𝑛 > 1, then 𝑎 not invertible
– 𝜑 𝑛 = #{𝑎 < 𝑛 and co-prime with 𝑛}

• (ℤ", +,2) is a field (𝑝 is a prime)
– ℤ!∗ = {1,… , 𝑝 − 1}; ∃𝑔 a generator
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Euclidean Algorithm
• Lemma: For all 𝑎 ≥ 𝑏 > 0, gcd 𝑎, 𝑏 =
gcd(𝑏, 𝑎	mod	𝑏)

• Theorem: For all 𝑎 ≥ 𝑏 > 0, we can find 𝑢, 𝑣 
such that gcd 𝑎, 𝑏 = 𝑎𝑢 + 𝑏𝑣

• Example: Take 𝑎 = 14 and 𝑏 = 10
– 14 = 1 = 10 + 4; 10 = 2 = 4 + 2; 4 = 2 = 2 + 0 

and in fact gcd 14,10 = 2 
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2 = 10 − 2 & 4 = 10 − 2 14 − 1 & 10 = −2 & 14 + 3 & 10
⇒ 𝑢, 𝑣 = (−2,3)



Basic Facts
• Euler’s Theorem: Let 𝑛 > 0. For all 𝑎 ∈ ℤ!∗ :

𝑎$(!) ≡ 1	mod	𝑛
• Corollary: For a prime 𝑝 and all 𝑎 such that 𝑝 ∤
𝑎, we have 𝑎"'( ≡ 1	mod	𝑝

• Example: Take ℤ()∗ = 1,3,7,9
– Note that 𝜑 10 = 4
– 3 is a generator: 3# ≡ 1, 3$ ≡ 3, 3% ≡ 9, 3& ≡ 7
– For 𝑎 = 7, we have 7' ≡ 1	mod	10
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Primality Testing
• Every integer 𝑛 is either a prime or it can be 

written as a product of primes (Euclid)
– Such a prime decomposition is unique (Gauss)

• There are infinitely many primes (Euclid)
– For large 𝑛 there are ≈ (

)*(()
primes in [𝑛] (PNT)

• We can efficiently test if an integer is a prime
– Thanks to a famous algorithm by Agrawal, Kayal, 

and Saxena
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Fermat’s Test
• Given a value 𝑝 to test, pick a random 𝑎 not 

divisible by 𝑝 and check if 𝑎"'( ≡ 1	mod	𝑝
– If not, conclude 𝑝 is composite
– If yes, conclude 𝑝 is probably prime

• Let 𝑎 be s.t. 𝑎!'( ≡ 1	mod	𝑛 for composite 𝑛
– 𝑎 is a Fermat liar, and 𝑛 is a Fermat pseudoprime
– There are infinitely many Fermat pseudoprimes
– There are infinitely many Carmichael numbers, 

i.e. numbers 𝑛 for which all values of 𝑎 co-prime 
with 𝑛 are Fermat liars
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Integer Factoring
• Let 𝑛 = 𝑝 2 𝑞. Goal: Given 𝑛, find 𝑝, 𝑞
• Brute force: Divide 𝑛 for all values ≤ 𝑛
– Complexity 𝑂(log% 𝑛 = 𝑝/ln(𝑝)) is exponential in 
𝑛 whenever 𝑝 ≈ 𝑛

• Many attempts and algorithms
– Pollard, Quadratic and Number Field Sieve
– Complexity is sub-exponential in 𝑛

• RSA challenges
– Last challenge (RSA-768) took over 2 years on a 

huge computer network
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Discrete Logarithm
• Let ℤ"∗ = {1,2, … , 𝑝 − 1}, for a prime 𝑝
• For each 𝑦 ∈ ℤ"∗ , 𝑦 = 𝑔* for some 𝑥
• Discrete Log assumption: Given (𝑦, 𝑔, 𝑝)

compute 𝑥
– I.e., modular exponentiation is a OWF

• Deeply studied problem
– Best algorithms have complexity sub-exponential 

in the size of 𝑝
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The Key Distribution Problem
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• Too many keys: 𝑂(𝑛%)
• Hard to distribute them
• Hard to store them

…



The Public Key Revolution
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Public-Key Encryption
• Bob has a key pair 𝑝𝑘, 𝑠𝑘

• Must be infeasible to compute 𝑠𝑘 from 𝑝𝑘
• No PKE scheme can achieve unconditional 

security
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Alice Bob

𝐄 𝐃

𝑝𝑘 𝑠𝑘

𝑚𝑐
ciphertext



CPA/CCA Security
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• No encryption queries (implicit given 𝑝𝑘)
– Cannot query on challenge ciphertext

• CCA security captures non-malleability

Eve Challenger
𝑚!, 𝑚"
𝑐

𝑏′

𝑐′
𝑚# = 𝐃(𝑠𝑘, 𝑐′)

𝑐′
𝑚# = 𝐃(𝑠𝑘,𝑚′)𝑝𝑘 𝑝𝑘, 𝑠𝑘

𝑐 ←$ 𝐄(𝑝𝑘,𝑚.)



Hystory of PKE
• Concept proposed by Diffie & Hellman (1976)
• Rivest, Shamir, Adleman invent RSA (1978)
– Very similar idea proposed by James Ellis in 1970 

while working for GCHQ (but top secret)

• CPA security (Goldwasser and Micali – 1984)
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Key Encapsulation
• PKE is one of the most significant advance in 

the 3000 years history of cryptography
• Complementary rathen than a replacement of 

secret-key cryptography
– PKE algorithms are expensive
– Use PKE to share a secret (session) key and later 

encrypt communication with AES
– Idea used in the Transport Layer Security (TLS) 

protocol (more on this later)
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Textbook RSA
• Let 𝑛 = 𝑝 2 𝑞 and 𝑒, 𝑑 s.t. 𝑒 2 𝑑 ≡ 1	mod	𝜑 𝑛
• Set 𝑝𝑘 = (𝑛, 𝑒) and 𝑠𝑘 = (𝑑, 𝑝, 𝑞)
• Encryption of 𝑚 ∈ ℤ!∗ : Return 𝑐 = 𝑚+ 	mod	𝑛
• Decryption of 𝑐 ∈ ℤ!∗ : Return 𝑐, 	mod	𝑛
– Correctness: 𝑐/ ≡ 𝑚0/ ≡ 𝑚 (by Euler’s Theorem)

• Parameters generation
– Need to sample large primes (primality testing)
– Sample 𝑒 at random and compute the inverse of 𝑒

modulo 𝜑(𝑛) (using the Euclidean algorithm)
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Remarks
• Need to encode bits in ℤ!∗

• Efficiency
– Modular exponentiation: "Square and multiply"
– Speed up using tricks from number theory
– Small 𝑒 makes encryption faster and |𝑝𝑘| smaller
– Harder to test for primality and need 𝑚 > 𝑛 /3

• Ciphertexts are malleable! 
– Given (𝑚$, 𝑐$) and (𝑚%, 𝑐%), then 𝑐$ = 𝑐% is an 

encryption of 𝑚$ = 𝑚%
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RSA with Padding
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• Clearly Textbook RSA is not CPA secure (why?)
• Randomized version
– Encrypt 𝑟||𝑚 (for random 𝑟)
– Discard 𝑟 on decryption

• PKCS Standard
0 |2| 𝑟 at	least	8	bytes | 0 |𝑚

– First byte s.t. the obtained integer is < 𝑛
– Second byte encodes mode (i.e., encryption) and 

enforces modular reduction



The RSA Assumption
• Given 𝑦 = 𝑥+ (for 𝑥 ←$ ℤ!∗ ), compute 𝑥
• I.e., compute the 𝒆-th root modulo 𝑛 = 𝑝 2 𝑞
• RSA implies Factoring
– If one can factor 𝑛, it can also compute 𝜑(𝑛) and 

thus 𝑑
• Other direction not known 
– But best algorithm for breaking RSA requires 

factoring the modulus
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ElGamal PKE
• Let ℎ = 𝑔* for 𝑔 a generator of ℤ"∗ and 

random 𝑥
• Set 𝑝𝑘 = (𝑔, 𝑝, ℎ) and 𝑠𝑘 = 𝑥
• Encryption of 𝑚 ∈ ℤ"∗ : Pick random 𝑟 and 

return 𝑐 = 𝑐(, 𝑐. = (𝑔/ , ℎ/ 2 𝑚)
• Decryption of (𝑐(, 𝑐.) ∈ (ℤ"∗ ).: Return 𝑐./𝑐(*

– 1!
1"
# =

2$34
(5$)#

= 2$34
(5#)$

= 2$34
2$

= 𝑚
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The CDH Assumption
• Let ℤ"∗ = {1,2, … , 𝑝 − 1}, for a prime 𝑝 and let 
𝑔 be a generator

• Given (𝑔, 𝑝, 𝑔* , 𝑔0) for random 𝑥, 𝑦, compute
𝑔*0

• CDH implies DL
– If we can solve DL, we can compute 𝑥 (or 𝑦) and 

thus obtain 𝑔67 = (𝑔7)6 (or 𝑔67 = (𝑔6)7)

• Other direction not known
– But best algorithm for solving CDH requires to 

compute a DL
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The DDH Assumption
• Distinguish (𝑔, 𝑝, 𝑔* , 𝑔0 , 𝑔1) for random 
𝑥, 𝑦, 𝑧 from (𝑔, 𝑝, 𝑔* , 𝑔0 , 𝑔*0)

• DDH implies CDH
– If we can solve CDH, we can compute 𝑔67  and 

thus distinguish between 𝑔67  and 𝑔8

• Other direction is false
– Simply because DDH does not hold in ℤ!∗

– Take 𝑝 = 2𝑞 + 1 (for primes 𝑝, 𝑞) and let 𝔾 be the 
subgroup of ℤ!∗ consisting of all elements 𝑦 = 𝑥%

– The order of 𝔾 is 𝑞
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Elliptic-Curve Cryptography
• The points of a curve 
𝐸: 𝑌. = 𝑋2 + 𝑎𝑋 + 𝑏
modulo a prime 𝑝 form a 
group 𝔾 = (𝐸,+)

• Discrete logarithm: Given 
𝑄 = 𝑥𝑃, find 𝑥
– DDH believed to be hard
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𝑃
𝑄

−𝑅

𝑅

• Bilinear map 𝑒: 𝔾×𝔾 → 𝔾3 such that

∀𝑎, 𝑏: 𝑒 𝑔9 , 𝑔. = 𝑒(𝑔, 𝑔)9.

𝑃 + 𝑄



The Bilinear Diffie-Hellman Assumption
• When 𝔾 is a bilinear group, DDH is easy in 𝔾
– Given (𝑔, 𝑝, 𝑒, 𝑋, 𝑌, 𝑍) can simply check that 
𝑒 𝑋, 𝑌 = 𝑒(𝑔, 𝑍)

• However, the following variant of CDH is 
believed to hold:
– Given (𝑔, 𝑝, 𝑒, 𝑔6 , 𝑔7 , 𝑔8) compute 𝑒(𝑔, 𝑔)678

– Once again BCDH implies CDH, but the other 
direction is unknown

• One can also assume DDH to be hard in 𝔾3
– This is called the SXDH assumption
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Digital Signatures
• Alice has a key pair (𝑝𝑘, 𝑠𝑘)

• Correctness: 
∀𝑝𝑘, 𝑠𝑘,𝑚: 𝐕 𝑝𝑘, (𝑚, 𝐒 𝑠𝑘,𝑚 ) = 1

• Security: Should be hard to forge a signature 
on a message without knowing the secret key
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𝑚

Alice Bob

𝐒 𝐕

𝑠𝑘 𝑝𝑘

0/1(𝑚, 𝜎)

signature



Unforgeability

• Adversary wins iff (𝑚, 𝜎) is valid and 𝑚 is 
fresh (i.e. not asked during signing queries)
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Eve Challenger

(𝑚, 𝜎) Inputs: Keys 𝑝𝑘, 𝑠𝑘
  

𝑚′
𝜎# = 𝐒(𝑠𝑘,𝑚′)

0/1

Inputs: Key 𝑝𝑘
  



How to Sign with RSA
• Let 𝑛 = 𝑝 2 𝑞 and 𝑒, 𝑑 s.t. 𝑒 2 𝑑 ≡ 1	mod	𝜑 𝑛
• Set 𝑝𝑘 = (𝑛, 𝑒) and 𝑠𝑘 = (𝑑, 𝑝, 𝑞)
• Signature of 𝑚 ∈ ℤ!∗ : Return 𝜎 = 𝑚, 	mod	𝑛
• Verification of (𝑚, 𝜎) ∈ ℤ!∗×ℤ!∗ : Return 1 iff 
𝜎+ = 𝑚	mod	𝑛
– Correctness: 𝜎0 ≡ 𝑚0/ ≡ 𝑚 (by Euler’s Theorem)

• Not secure!
– Pick any 𝜎 ∈ ℤ(∗ and output (𝑚, 𝜎) where 𝑚 =
𝜎0 	mod	𝑛
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Full-Domain Hash
• Solution: First hash the message!
• Now, 𝜎 = (𝐇(𝑚)), where 𝐇 is a 

cryptographic hash function
• Possible attacks:
– Pick any 𝜎 and let 𝐇 𝑚 = 𝜎0; hard to compute 
𝑚 from 𝐇(𝑚) (one-wayness)

– Given valid (𝑚, 𝜎), hard to find 𝑚′ ≠ 𝑚 s.t.
𝐇 𝑚: = 𝐇(𝑚) (weak collision resistance)

– Find 𝑚 ≠ 𝑚′ s.t. 𝐇 𝑚 = 𝐇(𝑚′) and obtain a 
valid signature on 𝑚 (strong collision resistance)
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Public-Key Infrastructure
• Need to certify public keys
– Otherwise simple man-in-the-middle attacks are 

possible

• Have a Certification Authority (CA) confirm the 
authenticity of public keys
– CA  signs binding between identity and public key

• Single CA not a good solution
– Unique point of failure
– In practice: Chains of certificates
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Basic Idea
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CA → A

CA → A
←$ 𝐒(𝑠𝑘45, 𝑝𝑘5||Alice)

Alice, 𝑝𝑘5

• Format of certificates standardized by ITU (X.509)
• Anybody can verify                   using 𝑝𝑘45CA → A



Chain of Certificates

• Propagation of trust
• Each user might be a member of different PKIs
• Typically the binding involves credentials
– User name only for management and auditing
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Root CA

CA( CA.

CA → 1 CA → 2

1 → A



Web of Trust

• Users can self-certify public keys
– No trusted party required (fully distributed 

environment)
– Approach taken in PGP (IETF)
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𝑝𝑘6, 𝑝𝑘7 , 𝑝𝑘8

𝑝𝑘9, E → B F → B G → B



Management of Certificates
• Certificates should have associated a validity 

interval
– Need to check it didn’t expire
– What granularity?

• Revocation of certificates
– Associate a different serial number to each 

certificate
– Maintain a Certificate Revocation List

• CA must be online in order to answer 
validation queries
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Identity-Based Encryption (IBE)
• Use identities as public keys

• Idea by Shamir (1984)
– First realization by Boneh and Franklin (2001)
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𝑚

Alice Bob

𝐄 𝐃

Bob 𝑠𝑘

𝑚𝑐

Key Generation Center

𝑚𝑠𝑘



IBE vs. PKI
• Keys are unrevocable in IBE
– Generate keys w.r.t. identity plus some timestamp

• PKI not necessary in IBE 
• KGC is a high-value target to adversaries 
– Several mitigations are possible

• Key escrow (not present in PKI) 
• IBE requires a secure channel in order to 

transmit the secret key to the user
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Semantic Security of IBE

• Adversary not allowed to extract the secret 
key for to the challenge identity 𝐼𝐷
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Eve Challenger
𝑚!, 𝑚", 𝐼𝐷

𝑐

𝑏′

𝐼𝐷′
𝑠𝑘$%#

𝐼𝐷′
𝑠𝑘$%#

𝑝𝑎𝑟𝑎𝑚𝑠 𝑝𝑎𝑟𝑎𝑚𝑠,𝑚𝑠𝑘
𝑐 ←$ 𝐄(𝐼𝐷,𝑚.)



Boneh-Franklin IBE
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𝑚𝑠𝑘 = 𝑥

𝐼𝐷

𝑑DE = (𝐇$(𝐼𝐷))6

(𝑔, ℎ = 𝑔6)𝑦DE = 𝑒 𝐇$(𝐼𝐷), ℎ

Pick 
random 𝑟

𝑐 = 𝑢, 𝑣 = (𝑔F , 𝑚 ⊕𝐇% 𝑦DEF )

𝐼𝐷

𝑚 = 𝑣 ⊕𝐇% 𝑒(𝑑DE , 𝑢) )

𝑒 𝑑DE , 𝑢 = 𝑒 (𝐇$(𝐼𝐷))6 , 𝑔F
= 𝑒((𝐇$ 𝐼𝐷 , 𝑔)6F = 𝑦DEF


