
DATA PRIVACY
AND SECURITY

Master's Degree in Data Science
Sapienza University of Rome

Prof. Daniele Venturi

Data Privacy and Security
2Crypto 101

CHAPTER 3:
Key Exchange

Key Exchange Protocols

• Allows to agree on a key over a public channel
– KE bootstraps secure communication
– KE constitues the link between symmetric and

asymmetric cryptography

Crypto 101
Data Privacy and Security

3

Alice Bob

Key 𝑘 Key 𝑘

Key Exchange Protocol

Diffie-Hellman Key Exchange

• 𝔾 is a cyclic group of prime order 𝑞, with
generator 𝑔
– Passive security follows from DDH
– E.g., 𝔾 is a subgroup of ℤ!∗ where 𝑞|𝑝 − 1

Crypto 101
Data Privacy and Security

4

𝑔!

𝑔"

𝑘 = (𝑔")! 𝑘 = (𝑔!)"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$

Perfect Forward Secrecy

• Once the session keys are destroyed there is
no way to recover them
– Not even the owners (not even at gun point)

Crypto 101
Data Privacy and Security

5

𝑔!

𝑔"

𝑘 = (𝑔")! 𝑘 = (𝑔!)"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$

(Wo)Man-in-the-Middle Attack

Crypto 101
Data Privacy and Security

6

𝑔!

𝑔"%

𝑘 = 𝑔!"% 𝑘 = 𝑔!%"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$

𝑔!%

𝑔"

(𝑔, 𝑝, 𝑞, 𝑥%, 𝑦′)

• Eve shares one secret key with each party
– She can decrypt all subsequent communication

• Solution: Authenticate messages!
– Master keys and session keys

Authenticated Key Exchange (AKE)
• Allow two parties to establish a common

secret in an authenticated way
– Parties should possess previously established

authentication keys (master keys)

• Secrecy: The session key should be
indistinguishable from a random string

• Additional properties:
– Mutual authentication
– Consistency (honest parties have a consistent

view of who the peers to the session are)

Crypto 101
Data Privacy and Security

7

First Attempt

Crypto 101
Data Privacy and Security

8

𝐵, 𝑌, 𝐒(𝑠𝑘& , 𝑌)

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝐴, 𝑋, 𝐒(𝑠𝑘', 𝑋)

• What if Eve ever finds an (𝑥, 𝑔! , 𝐒(𝑠𝑘', 𝑋))?
– Ephemeral leakage should not allow long-term

impersonation!

Second Attempt

Crypto 101
Data Privacy and Security

9

𝐵, 𝑌, 𝐒(𝑠𝑘& , 𝑋||𝑌)

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$𝐒(𝑠𝑘', 𝑋||𝑌)

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝐴, 𝑋

• View of the parties at the end of the protocol
– 𝐴: Shared 𝐾 = 𝑔#$ with 𝐵
– 𝐵: Shared 𝐾 = 𝑔#$ with 𝐴
– Looks fine, but…

Identity-Misbinding Attack

Crypto 101
Data Privacy and Security

10

𝐴, 𝑔# 𝐸, 𝑔#

𝐵, 𝑔$, 𝐒(𝑠𝑘% , 𝑔#||𝑔$)

• Wrong identity binding!
– 𝐴: 𝐾 ⇔ 𝐵, but 𝐵: 𝐾 ⇔ 𝐸

• Eve doesn't know 𝐾, but Bob considers
anything coming from Alice as from Eve

𝐒(𝑠𝑘&, 𝑔#||𝑔$) 𝐒(𝑠𝑘' , 𝑔#||𝑔$)
𝑠𝑘'

𝑠𝑘(

The ISO 9796 Defense

Crypto 101
Data Privacy and Security

11

𝐵, 𝑌, 𝐒(𝑠𝑘& , 𝑋| 𝑌 |𝐴)

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$𝐒(𝑠𝑘', 𝑋| 𝑌 |𝐵)

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝐴, 𝑋

• Include the peer identity under the signature
– Note that Eve cannot forge 𝐒(𝑠𝑘% , 𝑋| 𝑌 |𝐴)
– Avoids previous attack, and can be proven secure

𝑘 = 𝐇(𝐴| 𝐵 |𝑋| 𝑌 |𝐾)

Security Desiderata
• Intuitive (e.g., attacker capabilities, secrecy, …)
• Reject bad protocols
• Accept good protocols
• Ensure security of applications

– Secure communication in primis
– Composition and usability

• We will overview the Canetti-Krawczyk (CK)
model which is used to analyze many real-
world KE protocols

Crypto 101
Data Privacy and Security

12

Elements of the Definition
• A two-party protocol in a multi-party setting
• Multiple protocol executions run concurrently

– Each run of a protocol at a party is called session

• Sessions are given unique names
– (𝐴, 𝑠&) and (𝐵, 𝑠%) where 𝐵 is the intended peer
– The session id is (𝐴, 𝑠&, 𝐵, 𝑠%)
– Sessions with corresponding names like
(𝐴, 𝑠&, 𝐵, 𝑠%) and (𝐵, 𝑠% , 𝐴, 𝑠&) are matching

– At the end, a session outputs the session id and
the session key

Crypto 101
Data Privacy and Security

13

The Attacker
• We only assume unauthenticated channels
• The adversary

– Monitors/controls/modifies traffic
– Schedules sessions at will (interleaving)
– May corrupt parties learning long-term secrets

along with any state information and session keys
– May issue learning queries for short-term

information (e.g., session keys or state)

• A session is exposed if the owner is corrupted
or the adversary issued learning query

Crypto 101
Data Privacy and Security

14

The Security Definition
• Completed matching sessions output the

same key (correctness)
• The attacker learns nothing about unexposed

sessions
– Test session chosen by the adversary
– Attacker is given either the honest key or a

randomly generated key and can’t distinguish
– Key confirmation can be added to the definition

• Note: Never use session keys as part of the KE
protocol itself (e.g., TLS 1.2)

Crypto 101
Data Privacy and Security

15

Sanity Checks
• The above definition is simple but powerful

– Impersonation: If Eve can impersonate Bob
without corrupting him, she knows a key for an
unexposed session

– Eve can’t break one session given the key of
another session

– Identity misbinding: If Eve forces two (non-
matching) sessions with outputs (𝐴, 𝐵, 𝐾) and
(𝐵, 𝐸, 𝐾), she can choose one to be the test
session and use the other one to expose 𝐾

Crypto 101
Data Privacy and Security

16

Authenticators
• Consider a much weaker attack model where

a KE protocol uses authenticated channels
– Idealized model with passive attacker
– Still the attacker can do everything else
– The DH protocol is trivially secure in this model

• Authenticators are protocol compilers that
allow to reduce KE protocols secure in the
unauthenticated channels model to ones in
the authenticated channels model

Crypto 101
Data Privacy and Security

17

Authenticators based on Signatures

• The nonce avoids replay attacks
• If Bob thinks that he received message 𝑀

from Alice, then Alice sent 𝑀 to Bob
– One can show the above implies security of the

ISO 9796 protocol in the CK model

Crypto 101
Data Privacy and Security

18

𝐵,𝑁
𝐴, 𝐒(𝑠𝑘', 𝑀| 𝑁 |𝐵)𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝐴,𝑀

Authenticators based on Encryption

• Alice is the only party that can decrypt the
ciphertext sent by Bob
– Under randomly chosen key 𝑘%

• So Bob is convinced it received 𝑀 from Alice
– The first message can actually be dropped here

Crypto 101
Data Privacy and Security

19

𝐵, 𝐄(𝑝𝑘', 𝑘&)

𝐴,𝑀, 𝐓(𝑘& , 𝑀||𝐵)𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝐴,𝑀

SKEME (IKEv1)

Crypto 101
Data Privacy and Security

20

• The keys 𝑘' and 𝑘& are randomly chosen
• Can be seen as applying the encryption-based

authenticator on the classical DH protocol

𝐵, 𝑌, 𝐓 𝑘', 𝑌||𝐴 , 𝐄(𝑝𝑘', 𝑘&)

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$𝐴, 𝑋, 𝐓(𝑘& , 𝑋||𝐵)

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝐴, 𝐄(𝑝𝑘& , 𝑘')

𝑘 = 𝐇(𝐴| 𝐵 |𝑋| 𝑌 |𝐾)

On Identity Protection
• Identity protection

– Hide identities from passive/active adversaries

• A privacy concern in many scenarios
– Probing attacks in the internet
– Location anonimity of roaming users

• The design of IKE protocols in IPsec is heavily
influenced by the above concern
– SKEME and SIGMA
– Typically only one id is hidden in the presence of

active adversaries

Crypto 101
Data Privacy and Security

21

Why not ISO?

Crypto 101
Data Privacy and Security

22

𝐵, 𝑌, 𝐒(𝑠𝑘& , 𝑋| 𝑌 |𝐴)

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$𝐒(𝑠𝑘', 𝑋| 𝑌 |𝐵)

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝐴, 𝑋

• Unsuited for identity protection
– Bob needs to know Alice’s identity and viceversa
– Also, it leaves a signed proof of communication

𝑘 = 𝐇(𝐴| 𝐵 |𝑋| 𝑌 |𝐾)

SKEME with Encrypted IDs

Crypto 101
Data Privacy and Security

23

𝑌, 𝐓 𝑘', 𝑌||𝐴 , 𝐄(𝑝𝑘', 𝐵||𝑘&)

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$𝐴, 𝑋, 𝐓(𝑘& , 𝑋||𝐵)

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝐄(𝑝𝑘& , 𝐴||𝑘')

• The keys 𝑘' and 𝑘& are randomly chosen
• But Alice needs to know the public key of Bob

beforehand

Alternative: Station-To-Station (STS)

Crypto 101
Data Privacy and Security

24

𝑌, 𝐄(𝐾, 𝐵||𝐒 𝑠𝑘& , 𝑋||𝑌)

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$𝐄(𝐾, 𝐴||𝐒 𝑠𝑘', 𝑋||𝑌)

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝑋

• Add a proof of knowledge of the secret key 𝐾
• Insecure if Eve can register 𝑝𝑘' as her key

– At least in the variant where 𝐴 is in the clear

STS using MACs

Crypto 101
Data Privacy and Security

25

𝑌, 𝐵, 𝜎& = 𝐒 𝑠𝑘& , 𝑋||𝑌 , 𝐓(𝐾, 𝜎&)

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$𝐴, 𝜎' = 𝐒 𝑠𝑘', 𝑋||𝑌 , 𝐓(𝐾, 𝜎')

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝑋

• MACs more suited to prove knowledge of 𝐾
• Yet, the same attack as before still works

– We need to bind the key with the peer ids

SIGMA: Basic Version

Crypto 101
Data Privacy and Security

26

• Instead of signing Alice’s id (ISO), Bob tags its
own identity with another key 𝑘′
– The key 𝑘′ is derived from 𝐾 (as the session key 𝑘)

𝐵, 𝑌, 𝐒(𝑠𝑘& , 𝑋| 𝑌 , 𝐓(𝑘%, 𝐵)

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$𝐴, 𝐒(𝑠𝑘', 𝑋| 𝑌 , 𝐓(𝑘%, 𝐴)

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝑋

𝑘 = 𝐇(𝐴| 𝐵 |𝑋| 𝑌 |𝐾)

SIGMA-I: Protect Alice’s ID (Initiator)

Crypto 101
Data Privacy and Security

27

• Encrypt the identities of both Alice and Bob
using another key 𝑘′′ (still derived from 𝑘)
– Bob’s id is protected against passive attackers
– Alice’s id is protected against active attackers

𝑌, 𝐄(𝑘%%, 𝐵||𝐒(𝑠𝑘& , 𝑋| 𝑌 ||𝐓 𝑘%, 𝐵)

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$𝐄(𝑘%%, 𝐴||𝐒(𝑠𝑘', 𝑋| 𝑌 ||𝐓 𝑘%, 𝐴)

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝑋

𝑘 = 𝐇(𝐴| 𝐵 |𝑋| 𝑌 |𝐾)

SIGMA-R: Protect Bob’s ID (Responder)

Crypto 101
Data Privacy and Security

28

• Bob does not reveal his identity before
checking who he is talking to
– Bob’s id is protected against active attackers
– Alice’s id is protected against passive attackers

𝐄(𝑘%%, 𝐴||𝐒(𝑠𝑘', 𝑋| 𝑌 ||𝐓 𝑘%, 𝐴)

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$𝐄(𝑘%%, 𝐵||𝐒(𝑠𝑘& , 𝑋| 𝑌 ||𝐓 𝑘%, 𝐵)

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝑋

𝑘 = 𝐇(𝐴| 𝐵 |𝑋| 𝑌 |𝐾)

𝑌

Security of SIGMA
• The above description is oversimplified and

glosses over a number of details
– Additional information (context, negotiation, …)

• Nevertheless, SIGMA can be proved secure in
the CK model
– But no modular proof using authenticators is

currently known

• The protocol is used in IPSec as well as part of
the new TLS 1.3 standard

Crypto 101
Data Privacy and Security

29

AKE with Implicit Authentication
• Drawbacks of the ISO 9796 protocol

– It requires to send signatures and certificates

• What is the inherent cost of authentication?
– Communication complexity
– Computation complexity
– What security?

• Implicit authentication
– No signatures or tags sent
– Ability to compute session key → authentication

Crypto 101
Data Privacy and Security

30

Only the certificates
are sent

Some Ideas

Crypto 101
Data Privacy and Security

31

𝐴 = 𝑔) , 𝑋 = 𝑔!

• Many insecure attempts
– 𝑘 = 𝐇(𝑔() , 𝑔#$): given a key 𝑔#$ for one session

one can find a key for another session
– 𝑘 = 𝐇(𝑔() , 𝑔#$, 𝑔# , 𝑔$): knowing the key 𝑏 of

Bob one can impersonate Alice to Bob

• Want: security unless (𝑎, 𝑥) or (𝑏, 𝑦) leak

𝐵 = 𝑔* , 𝑌 = 𝑔"

MQV: The Basic Idea

Crypto 101
Data Privacy and Security

32

𝐴 = 𝑔) , 𝑋 = 𝑔!

• Idea: Let 𝐾 = 𝑔(),!)(*,")

– Insecure: Eve sends 𝑋∗ = 𝑔#∗/𝐴; Bob sends 𝑌,
and thus 𝐾 = (𝐵𝑌)#∗ which is the same as
computed by Bob (𝐴𝑋∗))*$= (𝐵𝑌)#∗

• Avoid the attack by letting 𝐾 = 𝑔(!,).)(",*/)
– Values 𝑑, 𝑒 s.t. Eve can’t control 𝑒, 𝑌 or 𝑑, 𝑋

𝐵 = 𝑔* , 𝑌 = 𝑔"

Hashed MQV

Crypto 101
Data Privacy and Security

33

𝐴 = 𝑔) , 𝑋 = 𝑔!

• The session key is just 𝑘 = 𝐇(𝐾)
– Computing 𝐾 requires 1 + 1/6 exponentiations

• MQV: Let 𝑑 be the first half bits of 𝑋 and 𝑒 be
the second half bits of 𝑌 (but insecure)

𝐵 = 𝑔* , 𝑌 = 𝑔"

𝑎, 𝑥 𝑏, 𝑦𝑑 = 𝐇(𝑋| Bob
𝑒 = 𝐇(𝑌||Alice)𝐾 = (𝑌𝐵/)!,). 𝐾 = (𝑋𝐴.)",*/

Hashed MQV

Crypto 101
Data Privacy and Security

34

𝐴 = 𝑔) , 𝑋 = 𝑔!

• No signatures exchanged
– But we can think of (𝑌𝐵+)#*(, (resp. (𝑋𝐴,)$*)+)

as a signature of Alice on 𝑋||Bob	(resp.	𝑌||Alice)
– Same signature by different parties on different

messages

𝐵 = 𝑔* , 𝑌 = 𝑔"

𝑎, 𝑥 𝑏, 𝑦𝑑 = 𝐇(𝑋||Bob)
𝑒 = 𝐇(𝑌||Alice)𝐾 = (𝑌𝐵/)!,). 𝐾 = (𝑋𝐴.)",*/

XCR Signatures

Crypto 101
Data Privacy and Security

35

𝑀,𝑋 = 𝑔!

• Bob is the signer with public key 𝐵 = 𝑔*
– Alice sends a message 𝑀	and	a	challenge	𝑋 = 𝑔#

– Alice accepts iff (𝑌𝐵+)#= 𝜎
• Alice is a designated verifier

𝑌 = 𝑔" , 𝜎 = 𝑋",*/

𝐵 𝑏, 𝑦
𝑒 = 𝐇(𝑌||𝑀)

Dual XCR Signatures

Crypto 101
Data Privacy and Security

36

𝑀', 𝑋 I 𝐴.

• Alice and Bob act as simultaneous signers
– Bob (Alice) generates an XCR signature on

challenge 𝑋 T 𝐴, (𝑌 T 𝐵+) and message 𝑀& (𝑀%)
– Same signature 𝜎 = (𝑋𝐴,)$*)+ = (𝑌𝐵+)#*(,

𝑀& , 𝑌 I 𝐵/

𝐵, 𝑎, 𝑥 𝐴, 𝑏, 𝑦𝑑 = 𝐇(𝑋||𝑀&)
𝑒 = 𝐇(𝑌||𝑀')

Security of HMQV
• One can show that HMQV is secure in the CK

model (assuming 𝐇 is a random oracle)
– Reduce security of HMQV to unforgeability of

Dual XCR signatures
– Reduce unforgeability of Dual XCR signatures to

unforgeability of XCR signatures
– Reduce unforgeability of XCR signatures to the

CDH assumption in the random oracle model

• The protocol is standardized by ANSI/ISO and
IEEE, and also used by the NSA

Crypto 101
Data Privacy and Security

37

Key Derivation Functions (KDFs)
• A KDF turns an imperfect source of

randomness into one or more random keys
– Imperfect: Not uniform

• In practice one just uses random oracles
– As in 𝑘 = 𝐇(𝑔#$)
– Repeated extraction as 𝐇(𝑔#$| 𝐴 ||𝐇(𝑔#$| 𝐵 …

• However, no 𝐇 can be a random oracle
– Length extension attack: Given 𝐇(𝑔#$||𝐴) can

compute 𝐇(𝑔#$||𝐵) if 𝐴 is a prefix of 𝐵

Crypto 101
Data Privacy and Security

38

Extract-than-Expand

• The value 𝑠 is a salt that is public but random
– This is usually also short

• The value 𝐾 is the starting key material
• Extract function: a randomness extractor
• Expand function: typically a PRF

Crypto 101
Data Privacy and Security

39

𝐄𝐱𝐭𝐫𝐚𝐜𝐭

𝐾

𝑘-./𝑠

keys length

𝐄𝐱𝐩𝐚𝐧𝐝

context

Instantiations in Practice
• There are statistically-secure extractors

– But in practice those would require large seeds
and yield quite large entropy loss

• Alternative: Use a PRF for both extraction and
expansion
– Difficulty: the seed is public (but the input is not)
– There are examples of PRFs that do not work

• Luckily, the above works using practical PRFs
– In particular, with the standard HMAC

Crypto 101
Data Privacy and Security

40

Keyed Merkle-Damgaard
• Let 𝐜𝐦𝐩𝐬 be a compression function

outputting 160 bits out of 512 bits
• The keyed Merkle-Damgaard construction

uses the seed 𝑠 as initial vector

Crypto 101
Data Privacy and Security

41

𝐜𝐦𝐩𝐬𝑠

𝑥0

𝐜𝐦𝐩𝐬 𝐜𝐦𝐩𝐬…𝑧0

𝑥1 𝑥2

𝑧230 𝑧2 = 𝐇(𝑠, 𝑥)

NMAC: PRF Mode for Merkle-Damgaard

• Theorem: 𝐍𝐌𝐀𝐂(𝑘0||𝑘1,I) is a PRF assuming
𝐜𝐦𝐩𝐬 is a PRF

• HMAC is identical, but 𝑘0, 𝑘1 are derived from
the same key 𝑘

Crypto 101
Data Privacy and Security

42

𝐜𝐦𝐩𝐬𝑘0

𝑥0

𝐜𝐦𝐩𝐬 𝐜𝐦𝐩𝐬…𝑧0

𝑥1 𝑥2

𝑧230

𝐜𝐦𝐩𝐬𝑘1 𝑧230

Extract-than-Expand

• Expand function:
𝑘2,0 = 𝐇𝐌𝐀𝐂(𝑘345, 𝑘2| info |𝑖)

• This is HMAC as a PRF in feedback mode
• Heavily standardized (e.g., TLS 1.3, Whatsapp)

– And also provably secure

Crypto 101
Data Privacy and Security

43

𝐇𝐌𝐀𝐂

𝐾

𝑘-./𝑠

keys length

𝐇𝐌𝐀𝐂

context

Applications of HKDF
• IPSec:

– 𝑘 = 𝐇𝐊𝐃𝐅(nonces, 𝑔#$) where the nonces are
part of the protocol and used as salt

– In case the nonces are public the analysis requires
that 𝐇𝐊𝐃𝐅 is an extractor

– In case the nonces are secret (SKEME) the analysis
requires that 𝐇𝐊𝐃𝐅 is a PRF

• TLS 1.3 with shared key Z𝑘 (resumption):
– 𝑘 = 𝐇𝐊𝐃𝐅(i𝑘, 𝑔#$)
– 𝐇𝐊𝐃𝐅 as an extractor/PRF if i𝑘 is revealed/secret

Crypto 101
Data Privacy and Security

44

Password-Authenticated Key Exchange
• Authenticated key exchange still requires a

public-key infrastructure
• Alternative: Rely on a shared password
• The standardization of PAKE took several

years starting back in 1982
• Today, PAKE is used in many use cases

– TLS 1.3 (pre-shared key variant)
– iCloud
– RFID authentication

Crypto 101
Data Privacy and Security

45

Passwords
• A password is a string of symbols belonging to

a finite alphabet
– Equivalently a bitstring
– Needs to be stored securely

• Typical applications:
– Derive a cryptographic key
– Password-based authentication

Crypto 101
Data Privacy and Security

46

Attacks on Passwords
• Guessing always possible (brute force)

– Online: Trial & error
– Offline: Dictionary attacks

• Sniffing from networks or theft from server
• Software attacks (trojan horse programs)
• Social engineering (phishing)
• Shoulder surfing

Crypto 101
Data Privacy and Security

47

Online Password Guessing
• Always possible

– Servers are always online

• Requires interaction with server
– Limit number of failed attempts
– Limit guessing rate

• Guessing rate
– Attempt failure counter (but can’t block user

account)
– Increasing answer delay after each failed attempt

Crypto 101
Data Privacy and Security

48

Offline Password Guessing
• Can’t be detected
• Attacker may choose amount of resources
• Complexity of guessing can be controlled by

careful password selection
– Given value 𝑦 = 𝑓(𝜋, 𝑧), where 𝑓, 𝑧 are public, a

guessing attempt 𝜋′ means to check 𝑦 = 𝑓(𝜋4, 𝑧)

Crypto 101
Data Privacy and Security

49

Passwords Entropy
• Let 𝑋 be a random variable outputting

symbols from an alphabet 𝒜 = {𝑎0, … , 𝑎6}
• Denote by 𝑝2 the probability associated to 𝑎2
• Average information in bit/symbol

𝐻 𝑋 = −a
270

6

𝑝2 log 𝑝2

• Maximum entropy for uniform distribution
𝐻 𝑈 = log 𝑛 	

Crypto 101
Data Privacy and Security

50

ASCII Passwords
• Consider 7 bit ASCII: 95 printable chars

– 0-31 are control chars
– 127 is a special char

• For uniform passwords, with 𝑛 = 95 we have
𝐻 𝑈 = log 95 = 6.57 bit/char
– 128 bits of security correspond to random

password of roughly 20 chars

• Situation gets worse if only upper/lower chars
and numbers are used
– 𝐻 𝑈 = log 62 = 5.95 bit/char

Crypto 101
Data Privacy and Security

51

Passphrases
• More often users choose passphrases
• Let 𝑝(�⃗�) be the probability of ℓ consecutive

chars �⃗� = (𝑥0, … , 𝑥ℓ) ∈ 𝒜ℓ

• Now

𝐻 𝑋 = limℓ→:
−∑!⃗∈𝒜ℓ 𝑝(�⃗�) log 𝑝(�⃗�)

ℓ
• Italian language: 𝐻> 𝑋 ≈ 3.15 bit/char;
𝐻?(𝑋) ≈ 2.22 bit/char; 𝐻@(𝑋) ≈ 1.87
bit/char

Crypto 101
Data Privacy and Security

52

𝐻ℓ 𝑋

Users Choose Poor Passwords
• Study at Purdue University

• Among 69 million Yahoo! Passwords, 1.1% of
users pick same password

Crypto 101
Data Privacy and Security

53

Length Number Fraction of Total

1 55 0.4

2 87 0.6

3 212 2

4 449 3

5 1260 9

6 3035 22

7 2917 21

8 5772 42%

Password Selection
• Computer generated and refreshed

– Difficult to remember!

• System process periodically tries guessing user
passwords
– CPU intensive
– Memory intensive for big dictionaries
– Users might get annoyed

• Check user password as entered
– Simple guidance to select acceptable passwords

Crypto 101
Data Privacy and Security

54

Bloom Filters (1/2)
• Tradeoff between accuracy and time/memory

to check passwords belong to dictionary 𝒟
• Let 𝐇2 be 𝑘 hash functions yielding values in
[0, 𝑁 − 1] for 𝑁 = 2A and 𝑇 a table of 𝑁 bits

• Let 𝑦2 = 𝐇2(𝑤), ∀𝑤 ∈ 𝒟 and set 𝑇 𝑦2 = 1
• Given 𝜋, reject it iff 𝑇 𝐇2(𝜋) = 1, ∀𝑖 ∈ [𝑘]

Crypto 101
Data Privacy and Security

55

𝑇[𝑗]
0 1 0 ……

𝐇2 𝜋 = 𝑗

Bloom Filters (2/2)
• If 𝜋 ∈ 𝒟, it is always rejected
• If 𝜋 ∉ 𝒟, it might be rejected (false positive)

– Let 𝑞 = Pr 𝑇 𝑗 = 0: 𝑗 ∈ 0, 𝑁 − 1 =
Pr 𝐇5 𝑤 ≠ 𝑗: ∀𝑖 ∈ 𝑘 , 𝑤 ∈ 𝒟

• False positive rate:

• Optimal values for fixed false positive rate:
𝑘 ≈ − log1 𝑝 ;𝑁 ≈ −1.44 I 𝐷 I log1 𝑝

Crypto 101
Data Privacy and Security

56

𝑝 = (1 − 𝑞)6= (1 − (1 − 1/𝑁)67)6≈ (𝑘𝐷238)6

Password based Encryption

Crypto 101
Data Privacy and Security

57

𝐄
𝑀

𝜋
𝐶 𝐄 π,M :

salt ←$ {0,1}01:
𝐾 = 𝐇;(𝜋||salt)
𝐶 = 𝐾 ⊕𝑀

 Output (salt, 𝐶)

PKCS#5 Standard

e.g., 𝑐 = 10000

𝐇 𝐇 𝐇𝜋||salt 𝐾

𝑐 times

Salt and Stretching

Crypto 101
Data Privacy and Security

58

𝐄
𝑀

𝜋
𝐶, salt

ASCII text

𝐶, salt

Step 1:
𝑀! = 𝐇"(𝜋!||salt) ⊕ 𝐶
𝑀# = 𝐇"(𝜋#||salt) ⊕ 𝐶
𝑀$ = 𝐇"(𝜋$||salt) ⊕ 𝐶
⋯

Step 2:
𝑀! = as7e657q622! |a1
𝑀# = mnas237@##saw
𝑀$ = sometext
⋯

• Hash chain slows down
attacks by factor of c

• Salt defeats rainbow tables
and provides separation
between users

Typically assumed to
be trivial for the
adversary

Honey Encryption

Crypto 101
Data Privacy and Security

59

𝐄
𝑀

𝜋
𝐶, salt

Random message

𝐶, salt

Step 1:
𝑀! = 𝐇"(𝜋!||salt) ⊕ 𝐶
𝑀# = 𝐇"(𝜋#||salt) ⊕ 𝐶
𝑀$ = 𝐇"(𝜋$||salt) ⊕ 𝐶
⋯

Step 2:
𝑀! = 01010000111000
𝑀# = 01111100011000
𝑀$ = 11001111000101
⋯

Seems indistinguishable
to the adversary

Step 2 might be
hard for some

message
distribution!

Encrypted Key Exchange (EKE)

• Instantiation:
– 𝐄 𝜋,𝑀 = ideal cipher
– Hash protocol transcript with a random oracle

Crypto 101
Data Privacy and Security

60

𝐴, 𝐶' = 𝐄(𝜋'& , 𝑔!)

𝐵, 𝐶& = 𝐄(𝜋'& , 𝑔")

𝑘 = 𝐃(𝜋'& , 𝐶&)! 𝑘 = 𝐃(𝜋'& , 𝐶')"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$

𝜋'& 𝜋'&

Transport Layer Security (TLS)
• Goal: Establish a secure channel

– Key exchange: Yields keys for
confidentiality/authenticity

– Record layer: Use keys to secure communication
– Authentication (usually on server side)

• Used in tons of applications
– Amazon, ebay, e-commerce
– Email
– Google

Crypto 101
Data Privacy and Security

61

The Client-Sever Scenario

• What actually happens:
– You type amazon.it in your browser
– TLS connection with Amazon is negotiated
– You get to https:// for secure browsing
– You authenticate to Amazon on a secure link

Crypto 101
Data Privacy and Security

62

Key Exchange

Record Layer

History of TLS
• Started out as Secure Socket Layer (SSL)

– Developed by Netscape around 1995
– Goal: Secure communication over Internet

• Changed to TLS in 1999
– Secure communication (HTTPS)
– … but also FTP, secure emailing, etc.
– Heavily standardized

• Many implementations
– OpenSSL, BoringSSL, s2n (TLS by Amazon)

Crypto 101
Data Privacy and Security

63

SSL/TLS Versions
• SSL 1.0: Never released

– Too insecure for release

• SSL 2.0: Released in February 1995
– But contained a number of security flaws

• SSL 3.0: Released in 1996
• TLS 1.1: Protection against CBC-mode attacks
• TLS 1.2: Move from MD5 to SHA-1 (2008)

– However, first attacks on MD5 already in 2005

• TLS 1.3: August 2018; completely revised

Crypto 101
Data Privacy and Security

64

Attacks on TLS
• Renegotiation attack on SSL 3.0

– Ideal patch: Kill renegotiation
– Real patch: include previous session history

• Version rollback attacks
– Ideal patch: Kill backward compatibility
– Real patch: ??? (not a realistic attack)

• BEAST: Browser exploits of CBC vulnerabilities
– Ideal patch: Kill CBC mode
– Real patch: Discourage CBC mode

Crypto 101
Data Privacy and Security

65

Attacks on TLS (cont’d)
• Lucky 13: Exploit padding problems

– Ideal patch: Kill CBC mode
– Real patch: encouraged RC4 or use AES-GCM

• POODLE: Downgrade to SSL 3.0
– Ideal patch: Kill backward compatibility
– Real patch: ???

Crypto 101
Data Privacy and Security

66

Even More Attacks
• RC4 attacks: RC4 output is biased

– Ideal patch: Kill RC4
– Real patch: RFC 7465 prohibits RC4, but

• 30% of TLS traffic still uses RC4
• 75% of sites allow RC4 negotiation

• Heartbleed, 3Shake, FREAK, Logjam
• …

Crypto 101
Data Privacy and Security

67

Heartbleed
• Attack on OpenSSL based on HeartBeats

– HeartBeat requests keep a TLS connection alive
– HeartBeat contains a paylod along with its size

Crypto 101
Data Privacy and Security

68

Payload, Size=65536

Payload,
log=admin&pwd=C2bGV%64567dSF

1 byte

TLS 1.3: (EC)DHE

Crypto 101
Data Privacy and Security

69

𝐂𝐥𝐢𝐞𝐧𝐭𝐇𝐞𝐥𝐥𝐨
𝐂𝐥𝐢𝐞𝐧𝐭𝐊𝐞𝐲𝐒𝐡𝐚𝐫𝐞

𝐒𝐞𝐫𝐯𝐞𝐫𝐇𝐞𝐥𝐥𝐨
𝐒𝐞𝐫𝐯𝐞𝐫𝐊𝐞𝐲𝐒𝐡𝐚𝐫𝐞

𝐒𝐞𝐫𝐯𝐞𝐫𝐂𝐨𝐧𝐟𝐢𝐠𝐮𝐫𝐚𝐭𝐢𝐨𝐧
𝐒𝐞𝐫𝐯𝐞𝐫𝐂𝐞𝐫𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐞

𝐒𝐞𝐫𝐯𝐞𝐫𝐂𝐞𝐫𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐞𝐕𝐞𝐫𝐢𝐟𝐲
𝐒𝐞𝐫𝐯𝐞𝐫𝐅𝐢𝐧𝐢𝐬𝐡𝐞𝐝
𝐂𝐥𝐢𝐞𝐧𝐭𝐂𝐞𝐫𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐞

𝐂𝐥𝐢𝐞𝐧𝐭𝐂𝐞𝐫𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐞𝐕𝐞𝐫𝐢𝐟𝐲
𝐂𝐥𝐢𝐞𝐧𝐭𝐅𝐢𝐧𝐢𝐬𝐡𝐞𝐝

𝐡𝐚𝐧𝐝𝐬𝐡𝐚𝐤𝐞	𝐤𝐞𝐲 𝐡𝐚𝐧𝐝𝐬𝐡𝐚𝐤𝐞	𝐤𝐞𝐲

𝐜𝐡𝐚𝐧𝐧𝐞𝐥	𝐤𝐞𝐲 𝐜𝐡𝐚𝐧𝐧𝐞𝐥	𝐤𝐞𝐲

TLS 1.3: Crypto Details

Crypto 101
Data Privacy and Security

70

𝑁" , 𝑔#

𝑁$, 𝑔%

𝑁% ← {0,1}#&'
𝑥 ← ℤ(

𝑁) ← {0,1}#&'
𝑦 ← ℤ(

𝑝𝑘$, 𝑐𝑒𝑟𝑡$, 𝜎, 𝜏

𝐡𝐚𝐧𝐝𝐬𝐡𝐚𝐤𝐞	𝐤𝐞𝐲

𝐜𝐡𝐚𝐧𝐧𝐞𝐥	𝐤𝐞𝐲

𝐊𝐃𝐅(𝑔*+, 𝐶𝐻,… , 𝑆𝐾𝑆)
𝐡𝐚𝐧𝐝𝐬𝐡𝐚𝐤𝐞	𝐤𝐞𝐲

𝐊𝐃𝐅(𝑔*+, 𝐶𝐻,… , 𝑆𝐾𝑆)
𝜎 = 𝐒(𝑠𝑘), 𝐶𝐻,… , 𝑆𝐶𝑒𝑟𝑡)
𝜏 = 𝐓(𝑘),, 𝐶𝐻,… , 𝑆𝐾𝑆)

𝐜𝐡𝐚𝐧𝐧𝐞𝐥	𝐤𝐞𝐲
𝐊𝐃𝐅(𝑔*+, 𝐶𝐻,… , 𝐶𝐹) 𝐊𝐃𝐅(𝑔*+, 𝐶𝐻,… , 𝐶𝐹)

TLS 1.3: Pre-Shared Key Variant

Crypto 101
Data Privacy and Security

71

𝐂𝐥𝐢𝐞𝐧𝐭𝐇𝐞𝐥𝐥𝐨
𝐂𝐥𝐢𝐞𝐧𝐭𝐊𝐞𝐲𝐒𝐡𝐚𝐫𝐞
𝐞𝐚𝐫𝐥𝐲_𝐝𝐚𝐭𝐚

𝐩𝐬𝐤_𝐤𝐞_𝐦𝐨𝐝𝐞𝐬
𝐩𝐬𝐤_𝐬𝐡𝐚𝐫𝐞𝐝_𝐤𝐞𝐲
𝐒𝐞𝐫𝐯𝐞𝐫𝐇𝐞𝐥𝐥𝐨

𝐒𝐞𝐫𝐯𝐞𝐫𝐊𝐞𝐲𝐒𝐡𝐚𝐫𝐞
𝐩𝐬𝐤_𝐬𝐡𝐚𝐫𝐞𝐝_𝐤𝐞𝐲

𝐞𝐧𝐜𝐫𝐲𝐩𝐭𝐞𝐝_𝐞𝐱𝐭𝐞𝐧𝐬𝐢𝐨𝐧𝐬
𝐒𝐞𝐫𝐯𝐞𝐫𝐅𝐢𝐧𝐢𝐬𝐡𝐞𝐝

𝐩𝐫𝐞𝐬𝐡𝐚𝐫𝐞𝐝	𝐤𝐞𝐲 𝐩𝐫𝐞𝐬𝐡𝐚𝐫𝐞𝐝	𝐤𝐞𝐲

⋮

Externally or
from session
resumption

Zero Round-Trip Time
• TLS 1.3 requires a few messages before a key

is established
• 0RTT is an alternative to the PSK variant
• The client starts the protocol and immediately

delivers data
– This is achieved using a semi-static server key
– This key is available for short time periods
– 0RTT was first invented by Google in order to

reduce the latency

Crypto 101
Data Privacy and Security

72

0RTT: QUIC

Crypto 101
Data Privacy and Security

73

𝑔& ,𝐄(𝑘', data)

𝐄(𝑘', 𝑔()

semi-static
server key 𝑔-

𝑘! = 𝐊𝐃𝐅(𝑔.-)

semi-static
server key 𝑠

ephemeral key 𝑒, 𝑔.

ephemeral key 𝑡, 𝑔/

𝑘# = 𝐊𝐃𝐅(𝑔./)

𝑘! = 𝐊𝐃𝐅(𝑔.-)

𝐄(𝑘), data)
𝑘# = 𝐊𝐃𝐅(𝑔./)

Replay Attacks on QUIC

Crypto 101
Data Privacy and Security

74

𝑔& ,𝐄(𝑘', data)
semi-static

server key 𝑔-

𝑘! = 𝐊𝐃𝐅(𝑔.-)

semi-static
server key 𝑠

ephemeral key 𝑒, 𝑔.

𝑘! = 𝐊𝐃𝐅(𝑔.-)

𝑔& ,𝐄(𝑘', data)
Only way out:
Store previously
received values

