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Key Exchange Protocols

• Allows to agree on a key over a public channel
– KE bootstraps secure communication
– KE constitues the link between symmetric and 

asymmetric cryptography
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Diffie-Hellman Key Exchange

• 𝔾 is a cyclic group of prime order 𝑞, with 
generator 𝑔
– Passive security follows from DDH
– E.g., 𝔾 is a subgroup of ℤ!∗ where 𝑞|𝑝 − 1
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𝑔!

𝑔"

𝑘 = (𝑔")! 𝑘 = (𝑔!)"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$



Perfect Forward Secrecy

• Once the session keys are destroyed there is 
no way to recover them
– Not even the owners (not even at gun point)
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𝑔!

𝑔"

𝑘 = (𝑔")! 𝑘 = (𝑔!)"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$



(Wo)Man-in-the-Middle Attack
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𝑔!

𝑔"%

𝑘 = 𝑔!"% 𝑘 = 𝑔!%"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$

𝑔!%

𝑔"

(𝑔, 𝑝, 𝑞, 𝑥%, 𝑦′)

• Eve shares one secret key with each party
– She can decrypt all subsequent communication

• Solution: Authenticate messages!
– Master keys and session keys



Authenticated Key Exchange (AKE)
• Allow two parties to establish a common 

secret in an authenticated way
– Parties should possess previously established 

authentication keys (master keys)

• Secrecy: The session key should be 
indistinguishable from a random string

• Additional properties:
– Mutual authentication
– Consistency (honest parties have a consistent 

view of who the peers to the session are)
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First Attempt
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𝐵, 𝑌, 𝐒(𝑠𝑘& , 𝑌)

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝐴, 𝑋, 𝐒(𝑠𝑘', 𝑋)

• What if Eve ever finds an (𝑥, 𝑔! , 𝐒(𝑠𝑘', 𝑋))?
– Ephemeral leakage should not allow long-term 

impersonation!



Second Attempt
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𝐵, 𝑌, 𝐒(𝑠𝑘& , 𝑋||𝑌)

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$𝐒(𝑠𝑘', 𝑋||𝑌)

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝐴, 𝑋

• View of the parties at the end of the protocol
– 𝐴: Shared 𝐾 = 𝑔#$ with 𝐵
– 𝐵: Shared 𝐾 = 𝑔#$ with 𝐴
– Looks fine, but…



Identity-Misbinding Attack
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𝐴, 𝑔# 𝐸, 𝑔#

𝐵, 𝑔$ , 𝐒(𝑠𝑘% , 𝑔#||𝑔$)

• Wrong identity binding!
– 𝐴: 𝐾 ⇔ 𝐵, but 𝐵: 𝐾 ⇔ 𝐸

• Eve doesn't know 𝐾, but Bob considers 
anything coming from Alice as from Eve

𝐒(𝑠𝑘&, 𝑔#||𝑔$) 𝐒(𝑠𝑘' , 𝑔#||𝑔$)
𝑠𝑘'

𝑠𝑘(



The ISO 9796 Defense
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𝐵, 𝑌, 𝐒(𝑠𝑘& , 𝑋| 𝑌 |𝐴)

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$𝐒(𝑠𝑘', 𝑋| 𝑌 |𝐵)

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝐴, 𝑋

• Include the peer identity under the signature
– Note that Eve cannot forge 𝐒(𝑠𝑘% , 𝑋| 𝑌 |𝐴)
– Avoids previous attack, and can be proven secure

𝑘 = 𝐇(𝐴| 𝐵 |𝑋| 𝑌 |𝐾)



Security Desiderata
• Intuitive (e.g., attacker capabilities, secrecy, …)
• Reject bad protocols
• Accept good protocols
• Ensure security of applications

– Secure communication in primis
– Composition and usability

• We will overview the Canetti-Krawczyk (CK) 
model which is used to analyze many real-
world KE protocols
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Elements of the Definition
• A two-party protocol in a multi-party setting
• Multiple protocol executions run concurrently

– Each run of a protocol at a party is called session

• Sessions are given unique names
– (𝐴, 𝑠&) and (𝐵, 𝑠%) where 𝐵 is the intended peer
– The session id is (𝐴, 𝑠&, 𝐵, 𝑠%)
– Sessions with corresponding names like 
(𝐴, 𝑠&, 𝐵, 𝑠%) and (𝐵, 𝑠% , 𝐴, 𝑠&) are matching

– At the end, a session outputs the session id and 
the session key
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The Attacker
• We only assume unauthenticated channels
• The adversary 

– Monitors/controls/modifies traffic
– Schedules sessions at will (interleaving)
– May corrupt parties learning long-term secrets 

along with any state information and session keys
– May issue learning queries for short-term 

information (e.g., session keys or state)

• A session is exposed if the owner is corrupted 
or the adversary issued learning query
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The Security Definition 
• Completed matching sessions output the 

same key (correctness)
• The attacker learns nothing about unexposed

sessions
– Test session chosen by the adversary
– Attacker is given either the honest key or a 

randomly generated key and can’t distinguish
– Key confirmation can be added to the definition

• Note: Never use session keys as part of the KE 
protocol itself (e.g., TLS 1.2)
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Sanity Checks
• The above definition is simple but powerful

– Impersonation: If Eve can impersonate Bob 
without corrupting him, she knows a key for an 
unexposed session

– Eve can’t break one session given the key of 
another session

– Identity misbinding: If Eve forces two (non-
matching) sessions with outputs (𝐴, 𝐵, 𝐾) and 
(𝐵, 𝐸, 𝐾), she can choose one to be the test 
session and use the other one to expose 𝐾
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Authenticators
• Consider a much weaker attack model where 

a KE protocol uses authenticated channels
– Idealized model with passive attacker
– Still the attacker can do everything else
– The DH protocol is trivially secure in this model

• Authenticators are protocol compilers that 
allow to reduce KE protocols secure in the 
unauthenticated channels model to ones in 
the authenticated channels model
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Authenticators based on Signatures

• The nonce avoids replay attacks
• If Bob thinks that he received message 𝑀

from Alice, then Alice sent 𝑀 to Bob
– One can show the above implies security of the 

ISO 9796 protocol in the CK model
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𝐵,𝑁
𝐴, 𝐒(𝑠𝑘', 𝑀| 𝑁 |𝐵)𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝐴,𝑀



Authenticators based on Encryption

• Alice is the only party that can decrypt the 
ciphertext sent by Bob
– Under randomly chosen key 𝑘%

• So Bob is convinced it received 𝑀 from Alice
– The first message can actually be dropped here
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𝐵, 𝐄(𝑝𝑘', 𝑘&)

𝐴,𝑀, 𝐓(𝑘& , 𝑀||𝐵)𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝐴,𝑀



SKEME (IKEv1)
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• The keys 𝑘' and 𝑘&  are randomly chosen
• Can be seen as applying the encryption-based 

authenticator on the classical DH protocol

𝐵, 𝑌, 𝐓 𝑘', 𝑌||𝐴 , 𝐄(𝑝𝑘', 𝑘&)

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$𝐴, 𝑋, 𝐓(𝑘& , 𝑋||𝐵)

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝐴, 𝐄(𝑝𝑘& , 𝑘')

𝑘 = 𝐇(𝐴| 𝐵 |𝑋| 𝑌 |𝐾)



On Identity Protection
• Identity protection

– Hide identities from passive/active adversaries

• A privacy concern in many scenarios
– Probing attacks in the internet
– Location anonimity of roaming users

• The design of IKE protocols in IPsec is heavily 
influenced by the above concern
– SKEME and SIGMA
– Typically only one id is hidden in the presence of 

active adversaries
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Why not ISO?
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𝐵, 𝑌, 𝐒(𝑠𝑘& , 𝑋| 𝑌 |𝐴)

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$𝐒(𝑠𝑘', 𝑋| 𝑌 |𝐵)

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝐴, 𝑋

• Unsuited for identity protection
– Bob needs to know Alice’s identity and viceversa
– Also, it leaves a signed proof of communication

𝑘 = 𝐇(𝐴| 𝐵 |𝑋| 𝑌 |𝐾)



SKEME with Encrypted IDs
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𝑌, 𝐓 𝑘', 𝑌||𝐴 , 𝐄(𝑝𝑘', 𝐵||𝑘&)

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$𝐴, 𝑋, 𝐓(𝑘& , 𝑋||𝐵)

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝐄(𝑝𝑘& , 𝐴||𝑘')

• The keys 𝑘' and 𝑘&  are randomly chosen
• But Alice needs to know the public key of Bob 

beforehand



Alternative: Station-To-Station (STS)
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𝑌, 𝐄(𝐾, 𝐵||𝐒 𝑠𝑘& , 𝑋||𝑌 )

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$𝐄(𝐾, 𝐴||𝐒 𝑠𝑘', 𝑋||𝑌 )

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝑋

• Add a proof of knowledge of the secret key 𝐾
• Insecure if Eve can register 𝑝𝑘' as her key

– At least in the variant where 𝐴 is in the clear



STS using MACs
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𝑌, 𝐵, 𝜎& = 𝐒 𝑠𝑘& , 𝑋||𝑌 , 𝐓(𝐾, 𝜎&)

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$𝐴, 𝜎' = 𝐒 𝑠𝑘', 𝑋||𝑌 , 𝐓(𝐾, 𝜎')

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝑋

• MACs more suited to prove knowledge of 𝐾
• Yet, the same attack as before still works

– We need to bind the key with the peer ids



SIGMA: Basic Version
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• Instead of signing Alice’s id (ISO), Bob tags its 
own identity with another key 𝑘′
– The key 𝑘′ is derived from 𝐾 (as the session key 𝑘)

𝐵, 𝑌, 𝐒(𝑠𝑘& , 𝑋| 𝑌 , 𝐓(𝑘%, 𝐵)

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$𝐴, 𝐒(𝑠𝑘', 𝑋| 𝑌 , 𝐓(𝑘%, 𝐴)

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝑋

𝑘 = 𝐇(𝐴| 𝐵 |𝑋| 𝑌 |𝐾)



SIGMA-I: Protect Alice’s ID (Initiator)
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• Encrypt the identities of both Alice and Bob 
using another key 𝑘′′ (still derived from 𝑘)
– Bob’s id is protected against passive attackers
– Alice’s id is protected against active attackers

𝑌, 𝐄(𝑘%%, 𝐵||𝐒(𝑠𝑘& , 𝑋| 𝑌 ||𝐓 𝑘%, 𝐵 )

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$𝐄(𝑘%%, 𝐴||𝐒(𝑠𝑘', 𝑋| 𝑌 ||𝐓 𝑘%, 𝐴 )

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝑋

𝑘 = 𝐇(𝐴| 𝐵 |𝑋| 𝑌 |𝐾)



SIGMA-R: Protect Bob’s ID (Responder)
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• Bob does not reveal his identity before 
checking who he is talking to
– Bob’s id is protected against active attackers
– Alice’s id is protected against passive attackers

𝐄(𝑘%%, 𝐴||𝐒(𝑠𝑘', 𝑋| 𝑌 ||𝐓 𝑘%, 𝐴 )

𝑋 = 𝑔! 𝑌 = 𝑔"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$𝐄(𝑘%%, 𝐵||𝐒(𝑠𝑘& , 𝑋| 𝑌 ||𝐓 𝑘%, 𝐵 )

𝐾 = 𝑌! 𝐾 = 𝑋"
𝑠𝑘', 𝑝𝑘& 𝑠𝑘&, 𝑝𝑘'

𝑋

𝑘 = 𝐇(𝐴| 𝐵 |𝑋| 𝑌 |𝐾)

𝑌



Security of SIGMA
• The above description is oversimplified and 

glosses over a number of details
– Additional information (context, negotiation, …)

• Nevertheless, SIGMA can be proved secure in 
the CK model
– But no modular proof using authenticators is 

currently known

• The protocol is used in IPSec as well as part of 
the new TLS 1.3 standard
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AKE with Implicit Authentication
• Drawbacks of the ISO 9796 protocol

– It requires to send signatures and certificates

• What is the inherent cost of authentication?
– Communication complexity
– Computation complexity
– What security?

• Implicit authentication
– No signatures or tags sent
– Ability to compute session key → authentication
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Only the certificates 
are sent



Some Ideas

Crypto 101
Data Privacy and Security

31

𝐴 = 𝑔) , 𝑋 = 𝑔!

• Many insecure attempts
– 𝑘 = 𝐇(𝑔() , 𝑔#$): given a key 𝑔#$ for one session 

one can find a key for another session
– 𝑘 = 𝐇(𝑔() , 𝑔#$ , 𝑔# , 𝑔$): knowing the key 𝑏 of 

Bob one can impersonate Alice to Bob 

• Want: security unless (𝑎, 𝑥) or (𝑏, 𝑦) leak

𝐵 = 𝑔* , 𝑌 = 𝑔"



MQV: The Basic Idea
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𝐴 = 𝑔) , 𝑋 = 𝑔!

• Idea: Let 𝐾 = 𝑔(),!)(*,")

– Insecure: Eve sends 𝑋∗ = 𝑔#∗/𝐴; Bob sends 𝑌, 
and thus 𝐾 = (𝐵𝑌)#∗ which is the same as 
computed by Bob (𝐴𝑋∗))*$= (𝐵𝑌)#∗

• Avoid the attack by letting 𝐾 = 𝑔(!,).)(",*/) 
– Values 𝑑, 𝑒 s.t. Eve can’t control 𝑒, 𝑌 or 𝑑, 𝑋

𝐵 = 𝑔* , 𝑌 = 𝑔"



Hashed MQV
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𝐴 = 𝑔) , 𝑋 = 𝑔!

• The session key is just 𝑘 = 𝐇(𝐾)
– Computing 𝐾 requires 1 + 1/6 exponentiations

• MQV: Let 𝑑 be the first half bits of 𝑋 and 𝑒 be 
the second half bits of 𝑌 (but insecure)

𝐵 = 𝑔* , 𝑌 = 𝑔"

𝑎, 𝑥 𝑏, 𝑦𝑑 = 𝐇(𝑋| Bob
𝑒 = 𝐇(𝑌||Alice)𝐾 = (𝑌𝐵/)!,). 𝐾 = (𝑋𝐴.)",*/



Hashed MQV
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𝐴 = 𝑔) , 𝑋 = 𝑔!

• No signatures exchanged
– But we can think of (𝑌𝐵+)#*(, (resp. (𝑋𝐴,)$*)+) 

as a signature of Alice on 𝑋||Bob	(resp.	𝑌||Alice)
– Same signature by different parties on different

messages

𝐵 = 𝑔* , 𝑌 = 𝑔"

𝑎, 𝑥 𝑏, 𝑦𝑑 = 𝐇(𝑋||Bob)
𝑒 = 𝐇(𝑌||Alice)𝐾 = (𝑌𝐵/)!,). 𝐾 = (𝑋𝐴.)",*/



XCR Signatures
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𝑀,𝑋 = 𝑔!

• Bob is the signer with public key 𝐵 = 𝑔*
– Alice sends a message 𝑀	and	a	challenge	𝑋 = 𝑔#

– Alice accepts iff (𝑌𝐵+)#= 𝜎
• Alice is a designated verifier

𝑌 = 𝑔" , 𝜎 = 𝑋",*/

𝐵 𝑏, 𝑦
𝑒 = 𝐇(𝑌||𝑀)



Dual XCR Signatures

Crypto 101
Data Privacy and Security

36

𝑀', 𝑋 I 𝐴.

• Alice and Bob act as simultaneous signers
– Bob (Alice) generates an XCR signature on 

challenge 𝑋 T 𝐴, (𝑌 T 𝐵+) and message 𝑀& (𝑀%)
– Same signature 𝜎 = (𝑋𝐴,)$*)+ = (𝑌𝐵+)#*(,

𝑀& , 𝑌 I 𝐵/

𝐵, 𝑎, 𝑥 𝐴, 𝑏, 𝑦𝑑 = 𝐇(𝑋||𝑀&)
𝑒 = 𝐇(𝑌||𝑀')



Security of HMQV
• One can show that HMQV is secure in the CK 

model (assuming 𝐇 is a random oracle)
– Reduce security of HMQV to unforgeability of 

Dual XCR signatures
– Reduce unforgeability of Dual XCR signatures to 

unforgeability of XCR signatures
– Reduce unforgeability of XCR signatures to the 

CDH assumption in the random oracle model

• The protocol is standardized by ANSI/ISO and 
IEEE, and also used by the NSA

Crypto 101
Data Privacy and Security

37



Key Derivation Functions (KDFs)
• A KDF turns an imperfect source of 

randomness into one or more random keys
– Imperfect: Not uniform

• In practice one just uses random oracles
– As in 𝑘 = 𝐇(𝑔#$)
– Repeated extraction as 𝐇(𝑔#$| 𝐴 ||𝐇(𝑔#$| 𝐵 …

• However, no 𝐇 can be a random oracle
– Length extension attack: Given 𝐇(𝑔#$||𝐴) can 

compute 𝐇(𝑔#$||𝐵) if 𝐴 is a prefix of 𝐵

Crypto 101
Data Privacy and Security

38



Extract-than-Expand

• The value 𝑠 is a salt that is public but random
– This is usually also short

• The value 𝐾 is the starting key material
• Extract function: a randomness extractor
• Expand function: typically a PRF
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𝐄𝐱𝐭𝐫𝐚𝐜𝐭

𝐾

𝑘-./𝑠

keys length

𝐄𝐱𝐩𝐚𝐧𝐝

context



Instantiations in Practice
• There are statistically-secure extractors

– But in practice those would require large seeds 
and yield quite large entropy loss

• Alternative: Use a PRF for both extraction and 
expansion
– Difficulty: the seed is public (but the input is not)
– There are examples of PRFs that do not work

• Luckily, the above works using practical PRFs
– In particular, with the standard HMAC
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Keyed Merkle-Damgaard
• Let 𝐜𝐦𝐩𝐬 be a compression function

outputting 160 bits out of 512 bits
• The keyed Merkle-Damgaard construction 

uses the seed 𝑠 as initial vector
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𝐜𝐦𝐩𝐬𝑠

𝑥0

𝐜𝐦𝐩𝐬 𝐜𝐦𝐩𝐬…𝑧0

𝑥1 𝑥2

𝑧230 𝑧2 = 𝐇(𝑠, 𝑥)



NMAC: PRF Mode for Merkle-Damgaard

• Theorem: 𝐍𝐌𝐀𝐂(𝑘0||𝑘1,I) is a PRF assuming 
𝐜𝐦𝐩𝐬 is a PRF

• HMAC is identical, but 𝑘0, 𝑘1 are derived from 
the same key 𝑘
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𝐜𝐦𝐩𝐬𝑘0

𝑥0

𝐜𝐦𝐩𝐬 𝐜𝐦𝐩𝐬…𝑧0

𝑥1 𝑥2

𝑧230

𝐜𝐦𝐩𝐬𝑘1 𝑧230



Extract-than-Expand

• Expand function: 
𝑘2,0 = 𝐇𝐌𝐀𝐂(𝑘345, 𝑘2| info |𝑖)

• This is HMAC as a PRF in feedback mode 
• Heavily standardized (e.g., TLS 1.3, Whatsapp)

– And also provably secure
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𝐇𝐌𝐀𝐂

𝐾

𝑘-./𝑠

keys length

𝐇𝐌𝐀𝐂

context



Applications of HKDF
• IPSec:

– 𝑘 = 𝐇𝐊𝐃𝐅(nonces, 𝑔#$) where the nonces are 
part of the protocol and used as salt

– In case the nonces are public the analysis requires 
that 𝐇𝐊𝐃𝐅 is an extractor

– In case the nonces are secret (SKEME) the analysis 
requires that 𝐇𝐊𝐃𝐅 is a PRF

• TLS 1.3 with shared key Z𝑘 (resumption):
– 𝑘 = 𝐇𝐊𝐃𝐅(i𝑘, 𝑔#$)
– 𝐇𝐊𝐃𝐅 as an extractor/PRF if i𝑘 is revealed/secret
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Password-Authenticated Key Exchange
• Authenticated key exchange still requires a 

public-key infrastructure
• Alternative: Rely on a shared password
• The standardization of PAKE took several 

years starting back in 1982
• Today, PAKE is used in many use cases

– TLS 1.3 (pre-shared key variant)
– iCloud
– RFID authentication
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Passwords
• A password is a string of symbols belonging to 

a finite alphabet 
– Equivalently a bitstring
– Needs to be stored securely

• Typical applications: 
– Derive a cryptographic key
– Password-based authentication
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Attacks on Passwords
• Guessing always possible (brute force)

– Online: Trial & error
– Offline: Dictionary attacks

• Sniffing from networks or theft from server
• Software attacks (trojan horse programs)
• Social engineering (phishing)
• Shoulder surfing
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Online Password Guessing
• Always possible 

– Servers are always online

• Requires interaction with server 
– Limit number of failed attempts
– Limit guessing rate

• Guessing rate
– Attempt failure counter (but can’t block user 

account)
– Increasing answer delay after each failed attempt
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Offline Password Guessing
• Can’t be detected 
• Attacker may choose amount of resources 
• Complexity of guessing can be controlled by 

careful password selection 
– Given value 𝑦 = 𝑓(𝜋, 𝑧), where 𝑓, 𝑧 are public, a 

guessing attempt 𝜋′ means to check 𝑦 = 𝑓(𝜋4, 𝑧)
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Passwords Entropy
• Let 𝑋 be a random variable outputting 

symbols from an alphabet 𝒜 = {𝑎0, … , 𝑎6}
• Denote by 𝑝2 the probability associated to 𝑎2
• Average information in bit/symbol

𝐻 𝑋 = −a
270

6

𝑝2 log 𝑝2

• Maximum entropy for uniform distribution 
𝐻 𝑈 = log 𝑛  	
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ASCII Passwords
• Consider 7 bit ASCII: 95 printable chars

– 0-31 are control chars
– 127 is a special char

• For uniform passwords, with 𝑛 = 95 we have 
𝐻 𝑈 = log 95 = 6.57 bit/char
– 128 bits of security correspond to random 

password of roughly 20 chars

• Situation gets worse if only upper/lower chars 
and numbers are used
– 𝐻 𝑈 = log 62 = 5.95 bit/char
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Passphrases
• More often users choose passphrases
• Let 𝑝(�⃗�) be the probability of ℓ consecutive 

chars �⃗� = (𝑥0, … , 𝑥ℓ) ∈ 𝒜ℓ

• Now

𝐻 𝑋 = limℓ→:
−∑!⃗∈𝒜ℓ 𝑝(�⃗�) log 𝑝(�⃗�)

ℓ
• Italian language: 𝐻> 𝑋 ≈ 3.15 bit/char; 
𝐻?(𝑋) ≈ 2.22 bit/char; 𝐻@(𝑋) ≈ 1.87
bit/char
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𝐻ℓ 𝑋



Users Choose Poor Passwords
• Study at Purdue University

• Among 69 million Yahoo! Passwords, 1.1% of 
users pick same password
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Length Number Fraction of Total

1 55 0.4

2 87 0.6

3 212 2

4 449 3

5 1260 9

6 3035 22

7 2917 21

8 5772 42%



Password Selection
• Computer generated and refreshed

– Difficult to remember!

• System process periodically tries guessing user 
passwords
– CPU intensive
– Memory intensive for big dictionaries
– Users might get annoyed

• Check user password as entered 
– Simple guidance to select acceptable passwords
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Bloom Filters (1/2)
• Tradeoff between accuracy and time/memory 

to check passwords belong to dictionary 𝒟
• Let 𝐇2 be 𝑘 hash functions yielding values in 
[0, 𝑁 − 1] for 𝑁 = 2A and 𝑇 a table of 𝑁 bits

• Let 𝑦2 = 𝐇2(𝑤), ∀𝑤 ∈ 𝒟 and set 𝑇 𝑦2 = 1
• Given 𝜋, reject it iff 𝑇 𝐇2(𝜋) = 1, ∀𝑖 ∈ [𝑘]
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𝑇[𝑗]
0 1 0 ……

𝐇2 𝜋 = 𝑗



Bloom Filters (2/2)
• If 𝜋 ∈ 𝒟, it is always rejected
• If 𝜋 ∉ 𝒟, it might be rejected (false positive)

– Let 𝑞 = Pr 𝑇 𝑗 = 0: 𝑗 ∈ 0, 𝑁 − 1 =
Pr 𝐇5 𝑤 ≠ 𝑗: ∀𝑖 ∈ 𝑘 , 𝑤 ∈ 𝒟

• False positive rate: 

• Optimal values for fixed false positive rate: 
𝑘 ≈ − log1 𝑝 ;𝑁 ≈ −1.44 I 𝐷 I log1 𝑝
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𝑝 = (1 − 𝑞)6= (1 − (1 − 1/𝑁)67)6≈ (𝑘𝐷238)6



Password based Encryption
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𝐄
𝑀

𝜋
𝐶 𝐄 π,M :

salt ←$ {0,1}01:
𝐾 = 𝐇;(𝜋||salt)
𝐶 = 𝐾 ⊕𝑀

  Output (salt, 𝐶)

PKCS#5 Standard

e.g., 𝑐 = 10000

𝐇 𝐇 𝐇𝜋||salt 𝐾

𝑐 times



Salt and Stretching
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𝐄
𝑀

𝜋
𝐶, salt

ASCII text

𝐶, salt

Step 1:
𝑀! = 𝐇"(𝜋!||salt) ⊕ 𝐶
𝑀# = 𝐇"(𝜋#||salt) ⊕ 𝐶
𝑀$ = 𝐇"(𝜋$||salt) ⊕ 𝐶
⋯

Step 2:
𝑀! = as7e657q622! |a1
𝑀# = mnas237@##saw
𝑀$ = sometext
⋯

• Hash chain slows down 
attacks by factor of c

• Salt defeats rainbow tables 
and provides separation 
between users

Typically assumed to 
be trivial for the 
adversary



Honey Encryption
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𝐄
𝑀

𝜋
𝐶, salt

Random message

𝐶, salt

Step 1:
𝑀! = 𝐇"(𝜋!||salt) ⊕ 𝐶
𝑀# = 𝐇"(𝜋#||salt) ⊕ 𝐶
𝑀$ = 𝐇"(𝜋$||salt) ⊕ 𝐶
⋯

Step 2:
𝑀! = 01010000111000
𝑀# = 01111100011000
𝑀$ = 11001111000101
⋯

Seems indistinguishable 
to the adversary

Step 2 might be 
hard for some 

message 
distribution!



Encrypted Key Exchange (EKE)

• Instantiation:
– 𝐄 𝜋,𝑀 = ideal cipher
– Hash protocol transcript with a random oracle
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𝐴, 𝐶' = 𝐄(𝜋'& , 𝑔!)

𝐵, 𝐶& = 𝐄(𝜋'& , 𝑔")

𝑘 = 𝐃(𝜋'& , 𝐶&)! 𝑘 = 𝐃(𝜋'& , 𝐶')"

𝑥 ←$ ℤ$ 𝑦 ←$ ℤ$

𝜋'& 𝜋'&



Transport Layer Security (TLS)
• Goal: Establish a secure channel

– Key exchange: Yields keys for 
confidentiality/authenticity

– Record layer: Use keys to secure communication
– Authentication (usually on server side)

• Used in tons of applications
– Amazon, ebay, e-commerce
– Email
– Google
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The Client-Sever Scenario

• What actually happens:
– You type amazon.it in your browser
– TLS connection with Amazon is negotiated
– You get to https:// for secure browsing
– You authenticate to Amazon on a secure link
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Key Exchange

Record Layer



History of TLS
• Started out as Secure Socket Layer (SSL)

– Developed by Netscape around 1995
– Goal: Secure communication over Internet

• Changed to TLS in 1999
– Secure communication (HTTPS)
– … but also FTP, secure emailing, etc.
– Heavily standardized

• Many implementations
– OpenSSL, BoringSSL, s2n (TLS by Amazon)
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SSL/TLS Versions
• SSL 1.0: Never released

– Too insecure for release

• SSL 2.0: Released in February 1995
– But contained a number of security flaws

• SSL 3.0: Released in 1996
• TLS 1.1: Protection against CBC-mode attacks
• TLS 1.2: Move from MD5 to SHA-1 (2008)

– However, first attacks on MD5 already in 2005

• TLS 1.3: August 2018; completely revised
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Attacks on TLS
• Renegotiation attack on SSL 3.0

– Ideal patch: Kill renegotiation
– Real patch: include previous session history

• Version rollback attacks
– Ideal patch: Kill backward compatibility
– Real patch: ??? (not a realistic attack)

• BEAST: Browser exploits of CBC vulnerabilities
– Ideal patch: Kill CBC mode
– Real patch: Discourage CBC mode
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Attacks on TLS (cont’d)
• Lucky 13: Exploit padding problems

– Ideal patch: Kill CBC mode
– Real patch: encouraged RC4 or use AES-GCM

• POODLE: Downgrade to SSL 3.0
– Ideal patch: Kill backward compatibility
– Real patch: ???
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Even More Attacks
• RC4 attacks: RC4 output is biased

– Ideal patch: Kill RC4
– Real patch: RFC 7465 prohibits RC4, but

• 30% of TLS traffic still uses RC4
• 75% of sites allow RC4 negotiation

• Heartbleed, 3Shake, FREAK, Logjam
• …
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Heartbleed
• Attack on OpenSSL based on HeartBeats

– HeartBeat requests keep a TLS connection alive
– HeartBeat contains a paylod along with its size
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Payload, Size=65536

Payload, 
log=admin&pwd=C2bGV%64567dSF

1 byte



TLS 1.3: (EC)DHE
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𝐂𝐥𝐢𝐞𝐧𝐭𝐇𝐞𝐥𝐥𝐨
𝐂𝐥𝐢𝐞𝐧𝐭𝐊𝐞𝐲𝐒𝐡𝐚𝐫𝐞

𝐒𝐞𝐫𝐯𝐞𝐫𝐇𝐞𝐥𝐥𝐨
𝐒𝐞𝐫𝐯𝐞𝐫𝐊𝐞𝐲𝐒𝐡𝐚𝐫𝐞

𝐒𝐞𝐫𝐯𝐞𝐫𝐂𝐨𝐧𝐟𝐢𝐠𝐮𝐫𝐚𝐭𝐢𝐨𝐧
𝐒𝐞𝐫𝐯𝐞𝐫𝐂𝐞𝐫𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐞

𝐒𝐞𝐫𝐯𝐞𝐫𝐂𝐞𝐫𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐞𝐕𝐞𝐫𝐢𝐟𝐲
𝐒𝐞𝐫𝐯𝐞𝐫𝐅𝐢𝐧𝐢𝐬𝐡𝐞𝐝
𝐂𝐥𝐢𝐞𝐧𝐭𝐂𝐞𝐫𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐞

𝐂𝐥𝐢𝐞𝐧𝐭𝐂𝐞𝐫𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐞𝐕𝐞𝐫𝐢𝐟𝐲
𝐂𝐥𝐢𝐞𝐧𝐭𝐅𝐢𝐧𝐢𝐬𝐡𝐞𝐝

𝐡𝐚𝐧𝐝𝐬𝐡𝐚𝐤𝐞	𝐤𝐞𝐲 𝐡𝐚𝐧𝐝𝐬𝐡𝐚𝐤𝐞	𝐤𝐞𝐲

𝐜𝐡𝐚𝐧𝐧𝐞𝐥	𝐤𝐞𝐲 𝐜𝐡𝐚𝐧𝐧𝐞𝐥	𝐤𝐞𝐲



TLS 1.3: Crypto Details
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𝑁" , 𝑔#

𝑁$, 𝑔%

𝑁% ← {0,1}#&'
𝑥 ← ℤ(

𝑁) ← {0,1}#&'
𝑦 ← ℤ(

𝑝𝑘$, 𝑐𝑒𝑟𝑡$, 𝜎, 𝜏

𝐡𝐚𝐧𝐝𝐬𝐡𝐚𝐤𝐞	𝐤𝐞𝐲

𝐜𝐡𝐚𝐧𝐧𝐞𝐥	𝐤𝐞𝐲

𝐊𝐃𝐅(𝑔*+, 𝐶𝐻,… , 𝑆𝐾𝑆)
𝐡𝐚𝐧𝐝𝐬𝐡𝐚𝐤𝐞	𝐤𝐞𝐲

𝐊𝐃𝐅(𝑔*+, 𝐶𝐻,… , 𝑆𝐾𝑆)
𝜎 = 𝐒(𝑠𝑘), 𝐶𝐻,… , 𝑆𝐶𝑒𝑟𝑡)
𝜏 = 𝐓(𝑘),, 𝐶𝐻,… , 𝑆𝐾𝑆)

𝐜𝐡𝐚𝐧𝐧𝐞𝐥	𝐤𝐞𝐲
𝐊𝐃𝐅(𝑔*+, 𝐶𝐻,… , 𝐶𝐹) 𝐊𝐃𝐅(𝑔*+, 𝐶𝐻,… , 𝐶𝐹)



TLS 1.3: Pre-Shared Key Variant
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𝐂𝐥𝐢𝐞𝐧𝐭𝐇𝐞𝐥𝐥𝐨
𝐂𝐥𝐢𝐞𝐧𝐭𝐊𝐞𝐲𝐒𝐡𝐚𝐫𝐞
𝐞𝐚𝐫𝐥𝐲_𝐝𝐚𝐭𝐚

𝐩𝐬𝐤_𝐤𝐞_𝐦𝐨𝐝𝐞𝐬
𝐩𝐬𝐤_𝐬𝐡𝐚𝐫𝐞𝐝_𝐤𝐞𝐲
𝐒𝐞𝐫𝐯𝐞𝐫𝐇𝐞𝐥𝐥𝐨

𝐒𝐞𝐫𝐯𝐞𝐫𝐊𝐞𝐲𝐒𝐡𝐚𝐫𝐞
𝐩𝐬𝐤_𝐬𝐡𝐚𝐫𝐞𝐝_𝐤𝐞𝐲

𝐞𝐧𝐜𝐫𝐲𝐩𝐭𝐞𝐝_𝐞𝐱𝐭𝐞𝐧𝐬𝐢𝐨𝐧𝐬
𝐒𝐞𝐫𝐯𝐞𝐫𝐅𝐢𝐧𝐢𝐬𝐡𝐞𝐝

𝐩𝐫𝐞𝐬𝐡𝐚𝐫𝐞𝐝	𝐤𝐞𝐲 𝐩𝐫𝐞𝐬𝐡𝐚𝐫𝐞𝐝	𝐤𝐞𝐲

⋮

Externally or 
from session 
resumption



Zero Round-Trip Time
• TLS 1.3 requires a few messages before a key 

is established
• 0RTT is an alternative to the PSK variant
• The client starts the protocol and immediately 

delivers data
– This is achieved using a semi-static server key
– This key is available for short time periods
– 0RTT was first invented by Google in order to 

reduce the latency
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0RTT: QUIC
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𝑔& ,𝐄(𝑘', data)

𝐄(𝑘', 𝑔()

semi-static 
server key 𝑔-

𝑘! = 𝐊𝐃𝐅(𝑔.-)

semi-static 
server key 𝑠

ephemeral key 𝑒, 𝑔.

ephemeral key 𝑡, 𝑔/

𝑘# = 𝐊𝐃𝐅(𝑔./)

𝑘! = 𝐊𝐃𝐅(𝑔.-)

𝐄(𝑘), data)
𝑘# = 𝐊𝐃𝐅(𝑔./)



Replay Attacks on QUIC
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𝑔& ,𝐄(𝑘', data)
semi-static 

server key 𝑔-

𝑘! = 𝐊𝐃𝐅(𝑔.-)

semi-static 
server key 𝑠

ephemeral key 𝑒, 𝑔.

𝑘! = 𝐊𝐃𝐅(𝑔.-)

𝑔& ,𝐄(𝑘', data)
Only way out: 
Store previously 
received values


