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Modern Cryptography
• Cryptography is everywhere
• Credit cards, electronic passports, electronic commerce,electronic 

voting, cryptocurrencies, …
• Provable security: Reductions to solving hard problems, given 

an attacker breaking security of cryptographic primitives
• Requires to believe 𝑃 ≠ 𝑁𝑃 (and in fact, that OWFs exist)
• Examples: factoring, discrete logarithm, bilinear maps…

• History of success
• Secret-key cryptography, public-key cryptography, identity-based 

cryptography, attribute-based cryptography, program obfuscation, …
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The Quantum Threat
• An algorithm by Shor [Sho94] solves the factoring and discrete 

logarithm problems in polynomial-time on a quantum machine
• The algorithm requires an ideal quantum Turing machine
• Factoring a 1024-bit integer requires 2050 logical qubits and a 

quantum circuit with billions of quantum gates
• Despite recent progress on quantum computation, current 

implementations can only factor tiny numbers (e.g., 15 and 21)
• Nevertheless, the NIST started in 2017 a process to solicit, 

evaluate, and standardize quantum-resistant cryptography
• The selected algorithms were announced in 2022
• Most of these algorithms are based on lattices
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What’s the Rush?
• Big quantum computers won’t be available for many years
• If ever…
• Can’t we just wait?

• Better safe than sorry
• Harvesting attacks: Store today’s keys/ciphertexts to break later
• Rewrite history: Forge signatures for old keys
• Deploying new cryptography at scale requires 10+ years
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Lattices



What is a Lattice?
• Simply, a set of points in a high-dimensional space
• Arranged periodically

• Formally, take 𝑛 linearly independent vectors (𝑏!, … , 𝑏") in ℝ" 
and consider all integer combinations

ℒ = {𝑎!𝑏! +⋯+ 𝑎"𝑏": 𝑎!, … , 𝑎" ∈ ℤ}
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• We call (𝑏!, … , 𝑏") a basis
• The same lattice may have 

different equivalent basis 
• Even if base vectors are long, there 

are short vectors in the lattice

𝑏!

𝑏"



History
• Geometric objects with rich mathematical structure
• Considerable mathematical interest starting from Gauss (1801), 

Hermite (1850), and Minkowski (1896)

• Recently, many interesting applications (cryptanalysis, factoring 
rational polynomials, finding integer relations, …)
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Equivalent Bases
• Sometimes, we write ℒ(𝐵) where 𝐵 is the matrix whose 

columns are (𝑏!, … , 𝑏")
• One can also define a lattice as a discrete additive subgroup of ℝ" 

• Theorem: Two bases 𝐵!, 𝐵# are equivalent iff 𝐵# = 𝐵! + 𝑈
• 𝑈 unimodular (i.e., integer matrix with det 𝑈 = ±1)
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(0,0)

(0,1)(1,1) (2,1)

(0,1)

(1,1)

(2,0)

• Equivalent bases:
• Permute vectors (i.e.,𝑏# ↔ 𝑏$)
• Negate vectors (i.e.,𝑏# ← (−𝑏#))
• Add integer multiple of another 

vector (i.e.,𝑏# ← 𝑏# + 𝑘 > 𝑏$ , 𝑘 ∈ ℤ)

(0,0)



The Fundamental Region
• The fundamental region of a lattice corresponds to a periodic 

tiling of ℝ" by copies of some body
• For instance, [0,1) is a fundamental region of the integer lattice ℤ, as 

every 𝑥 ∈ ℝ is in the unique translate 𝑥 + [0,1)

• Useful for measuring arbitrary points relative to a lattice
• Note 𝑥	mod	𝒫 𝐵 = 𝑎!mod1 𝑏! +⋯+ 𝑎"mod1 𝑏"
• A point 𝑥 is in a lattice iff 𝑥	mod	𝒫 𝐵 = (0,… , 0)
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• A lattice base yields a fundamental region 
called the fundamental parallelepiped

𝒫 𝐵 = 𝐵 > 0,1 " = G
#%!

"
𝑐# > 𝑏#: 𝑐# ∈ [0,1)



Determinant
• The determinant of a lattice ℒ(𝐵) is det ℒ = |det(𝐵)|
• Note that this is well defined, as for every unilateral 𝑈

|det(𝐵 + 𝑈)| = | det 𝐵 + det(𝑈)| = det(𝐵)
• The determinant corresponds to the volume of the fundamental 

parallelepiped
• The determinant is the reciprocal of the density (i.e., big determinant 

means sparse lattice)
• Moreover, the volume is the same for every fundamental region
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Successive Minima
• Let 𝜆!(ℒ) be the length of the shortest non-zero vector in a 

lattice ℒ
• Usually, in terms of the Euclidean norm
• The shortest vector is never unique, as for every 𝑣⃗ ∈ ℒ also −𝑣⃗ ∈ ℒ 

•More generally, 𝜆$(ℒ) denotes the radius of the ball containing 
𝑘 linearly independent vectors
• For 𝑘 = 𝑛 the ball contains a basis of the entire space
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Minkowski’s Theorem
• Lemma (Blichfeld): For any lattice ℒ and set 𝒮 with vol 𝒮 >
det(ℒ), there exist distinct 𝑧!, 𝑧# ∈ 𝒮 we have that 𝑧! − 𝑧# ∈ ℒ
• The proof is simple and only requires volume arguments (exercise)

• Theorem (Minkowski): For any lattice ℒ and convex, zero-
symmetric, set 𝒮 with vol 𝒮 > 2"det(ℒ), there exists a non-
zero lattice point in 𝒮
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𝑧"
𝑧"

2𝑧!

−2𝑧" • Let 𝑧!, 𝑧& ∈ 𝒮/2; by Blichfeld 𝑧! − 𝑧& ∈ ℒ
• Now, 2𝑧!, −2𝑧&∈ 𝒮
• So, their average 𝑧! − 𝑧& ∈ 𝒮
• Corollary (Minkowski): For every ℒ, we have 

that 𝜆!(ℒ) ≤ 𝑛 > det(ℒ)!/"



Hard Problems
• 𝐒𝐕𝐏%: Given 𝐵, find a vector in ℒ(𝐵) with length ≤ 𝛾 + 𝜆!(ℒ(𝐵))
• 𝐆𝐚𝐩𝐒𝐕𝐏%: Given 𝐵, decide if 𝜆!(ℒ(𝐵)) is ≤ 1 or ≥ 𝛾
• 𝐒𝐈𝐕𝐏%: Given 𝐵, find 𝑛 linearly independent vectors in ℒ(𝐵) 

with length ≤ 𝛾 + 𝜆"(ℒ(𝐵))
• 𝐂𝐕𝐏%: Given 𝐵 and 𝑣⃗, find a lattice point that is at most 𝛾 times 

farther than the closest lattice point
• It is known that 𝐒𝐕𝐏( ≤ 𝐂𝐕𝐏(

• 𝐁𝐃𝐃: Find closest lattice point, given that 𝑣⃗ is already close
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General Hardness Results

• Exact algorithms take time 2"

• Polynomial-time algorithm for gap 𝛾 = 2" &'( &'( "/ &'( "

• No better quantum algorithm known
•𝑁𝑃 hardness for gap 𝛾 = 𝑛*/ &'( &'( "
• For cryptographic applications, we need 𝛾 = Ω(𝑛)
• Not believed to be 𝑁𝑃-hard for 𝛾 = 𝑛
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1 𝑛+/ -./ -./ 0 𝑛 𝑛 20 -./ -./ 0/ -./ 0

𝑁𝑃−hard 𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃 cryptography 𝑃



Small Integer Solution Problem
• Fix dimension 𝑛, and modulus 𝑞 (e.g., 𝑞 ≈ 𝑛!)
• Given random vectors 𝒂", … , 𝒂# ∈ ℤ$%, find non-zero small 
𝑧", … , 𝑧# ∈ ℤ such that

• Observations:
• Trivial if the size of the 𝑧#’s is not restricted (Gaussian elimination)
• Equivalently, find non-zero short 𝒛 ∈ ℤ)  s.t. 𝑨 > 𝒛 = 𝟎 ∈ ℤ*"
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𝒂1𝑧1 + 𝒂2+𝑧2 + 𝒂3+⋯+ 𝑧3 + 𝟎= in ℤ40



SIS as a Lattice Problem
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• Matrix 𝑨 = (𝒂", … , 𝒂#) ∈ ℤ$%×#

 ℒ' 𝑨 = 𝒛 ∈ ℤ#: 𝑨 1 𝒛 = 𝟎

• Theorem (Ajt96). For any 𝑛-dimensional 
lattice, it holds that:

𝐆𝐚𝐩𝐒𝐕𝐏! ", 𝐒𝐈𝐕𝐏! " ≤ 𝐒𝐈𝐒!

(0, 𝑞)

(𝑞, 0)
(0,0)

Find short ( 𝒛 ≤ 𝛽 ≪ 𝑞)
solutions for random 𝑨

• Also true for any lattice coset ℒ𝒖, 𝑨 = 𝒛 ∈ ℤ): 𝑨 > 𝒛 = 𝒖 = 𝒖 +
ℒ, 𝑨  (i.e., inhomogenuous SIS)



Learning with Errors [Reg05]
• Dimension 𝑛, modulus 𝑞 > 2, noise distribution 𝜒
• Find 𝒔 ∈ ℤ+" given 𝑚 noisy random inner product equations
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+

=

𝒔-

𝑨

𝒆-

𝒃-

∈ ℤ*"

∈ ℤ*)
Small noise ∈ ℤ*)
𝑒# ≤ 𝛼𝑞; 𝛼 ≪ 1

• Trivial without noise
• Gaussian distribution over ℤ, 

with std deviation ≥ 𝑛 and ≪ 𝑞
• Rate parameter 𝛼 ≪ 1

• Need 𝛼𝑞 > 𝑛 for worst-case
hardness and because there is an 
exp((𝛼𝑞)&)-time attack



Decisional LWE
• Distinguish the matrix 𝑨 and the vector 𝒃 from random (𝑨, 𝒃)
• Decisional LWE is  equivalent to Search LWE
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𝒆-+

=

≡ 𝐔*
("/!)×)

𝒔-

𝑨

𝒃-

𝑨

𝒃-

∈ ℤ*"

∈ ℤ*)
Small noise ∈ ℤ*)
𝑒# ≤ 𝛼𝑞; 𝛼 ≪ 1

Uniform distribution over ℤ*
("/!)×)

≈



LWE as a Lattice Problem
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•Matrix 𝑨 = (𝒂!, … , 𝒂,) ∈ ℤ+"×,

 ℒ 𝑨 = 𝒛 ∈ ℤ,: 𝒛. = 𝒔. + 𝑨

• Theorem (Reg05,Pei10). For any 𝑛-
dimensional lattice, it holds that:

𝐆𝐚𝐩𝐒𝐕𝐏2" , 𝐒𝐈𝐕𝐏2" ≤ 𝐋𝐖𝐄

(0, 𝑞)

(𝑞, 0)
(0,0)

LWE is BDD on ℒ 𝑨 : Given 
𝒃- ≈ 𝒛- = 𝒔- > 𝑨 find 𝒛

• Quantum reduction for broad parameters [Reg05]
• Classical reduction for restricted parameters (e.g., 𝑞 ≈ 2") [Pei10]



Hardness of LWE
•More formally define the LWE distribution as

• Parameters:
• 𝛼 = 1/poly(𝑛) or 𝛼 = 23"!  (stronger assumption as 𝛼 decreases)
• 𝑚 = Θ(𝑛 log 𝑞) or 𝑚 = poly(𝑛) (stronger assumption as 𝑚 

increases)
• 𝑞 = 2"!  or 𝑞 = poly(𝑛) (stronger assumption as 𝑞 increases)
• Noise distribution χ such that ℙ 𝑒 > 𝛼𝑞: 𝑒 ← χ ≤ negl(𝑛)
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𝐋𝐖𝐄 𝑛,𝑚, 𝑞, χ = (𝑨, 𝒃):
𝑨 ← ℤ*"×); 𝒔 ← ℤ*";	

𝒆 ← χ); 𝒃- = 𝒔- > 𝑨 + 𝒆- *



Simple Properties
• Check a candidate solution 𝒕 ∈ ℤ+"
• Test if all 𝒃 − 𝒕, 𝒂  are small
• If 𝒕 ≠ 𝒔, then 𝒃 − 𝒕, 𝒂 = 𝒔 − 𝒕, 𝒂 + 𝑒 is well-spread in ℤ*

• Shift the secret by any 𝒓 ∈ ℤ+"
• Given (𝒂, 𝑏 = 𝒔, 𝒂 + 𝑒), output (𝒂, 𝑏4 = 𝑏 + 𝒓, 𝒂 = 𝒔 + 𝒓, 𝒂 + 𝑒)
• Using random 𝒓 yields a random self-reduction 
• Amplification of success probabilities (i.e., non-negligible success 

probability for random 𝒔 ∈ ℤ*" implies overwhelming success 
probability for every 𝒔 ∈ ℤ*")

•Multiple secrets: (𝒂, 𝑏! = 𝒔!, 𝒂 + 𝑒!, … , 𝒔/ , 𝒂 + 𝑒/) 
indistinguishable from random (𝒂, 𝑏!, … , 𝑏/)
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Search/Decision Equivalence
• Suppose we are given an oracle that perfectly distinguishes 

pairs 𝒂, 𝑏 = 𝒔, 𝒂 + 𝑒  from random 𝒂, 𝑏
• To find 𝑠!, it suffices to test if 𝑠! = 0
• Because we can shift 𝑠! by 0,1, … , 𝑞 − 1 (assuming 𝑞 = poly(𝑛))
• Then we can do the same for 𝑠&, … , 𝑠"

• The test: For each 𝒂, 𝑏 , choose random 𝑟 ∈ ℤ+  and invoke the 
oracle on pairs 𝒂0 = 𝒂 − (𝑟, 0, … , 0), 𝑏
• Note that 𝑏 = 𝒔, 𝒂′ + 𝑠! + 𝑟 + 𝑒
• If 𝑠! = 0, then 𝑏 = 𝒔, 𝒂′ + 𝑒 and the oracle accepts
• If 𝑠! ≠ 0, then 𝑏 is uniform (assuming 𝑞 prime) and the oracle rejects  
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LWE with Short Secrets
• Theorem [M01,ACPS09]: LWE is no easier if the secret is drawn 

from the error distribution 𝜒
• Intuition: Finding 𝒆 equivalent to finding 𝒔 (i.e., 𝒃- − 𝒆- = 𝒔- > 𝑨) 

• Transformation from secret 𝒔 ∈ ℤ+" to secret 𝒆̀ ← 𝜒"
• Draw samples to get (�𝑨, �𝒃- = 𝒔- > �𝑨 + �𝒆-) for square, invertible, �𝑨
• Transform each additional sample 𝒂, 𝑏 = 𝒔, 𝒂 + 𝑒 to

• This maps uniform 𝒂, 𝑏 to uniform 𝒂′, 𝑏′ , and thus works for 
decision LWE too
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𝒂4 = −�𝑨3! > 𝒂, 𝑏4 = 𝑏 + �𝒃, 𝒂4 = �𝒆, 𝒂4 + 𝑒



LWE vs SIS
• SIS has many valid solutions, whereas LWE only has one
• 𝐋𝐖𝐄 ≤ 𝐒𝐈𝐒
• Given 𝒛 such that 𝑨 > 𝒛 = 𝟎 from an SIS oracle, compute 𝒃- > 𝒛
• Now, 𝒃- > 𝒛 = 𝒆- > 𝒛 is small in the LWE case, whereas 𝒃- > 𝒛 is well-

spread in case 𝒃- is uniformly random
•What about the other direction?
• Not known in general
• True under quantum reductions
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Efficiency of LWE/SIS 
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• Getting one random-looking scalar 𝒃𝒊 ∈ ℤ+  requires an 𝑛-
dimensional inner product mod	𝑞

+

=

𝒔-

𝑨

𝒆-

𝒃-

∈ ℤ*"

∈ ℤ*)
Small noise ∈ ℤ*)
𝑒# ≤ 𝛼𝑞; 𝛼 ≪ 1

• Can amortize each column 𝒂𝒊 
over many secrets 𝒔𝒋, but the 
latter still requires �𝑂(𝑛) work per 
scalar output 

• Public keys are rather large, i.e. 
> 𝑛& time to encrypt/decrypt an 
𝑛-bit message

• Can we do better?



Wishful Thinking…
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•Main question: How to define the product ⋆ so that (𝒂, 𝒃) is 
pseudorandom
• Requires care: coordinate-wise product insecure for small errors

• Answer: Let ⋆ be multiplication in a polynomial ring, e.g. 
ℤ+2 𝑋 /(𝑋2 + 1)  
• Fast and practical with the FFT: 𝑑 log 𝑑 operations mod	𝑞
• The same ring structure used in NTRU [HPS08]

+ =

∈ ℤ*7

• Get 𝑑 pseudorandom scalars 
from just one cheap product 
operation ⋆

• Replace ℤ*7×7  chunks with ℤ*7

⋆ 𝒆- 𝒃-𝒂-𝒔-



LWE over Rings/Modules
• Let 𝑅 = ℤ 𝑋 /(𝑋2 + 1) for 𝑑 a power of 2 and 𝑅+ = ⁄𝑅 𝑞𝑅
• Elements of 𝑅$ are degree < 𝑑 polynomials with coefficients mod	𝑞
• Operations over 𝑅# are very efficient using FFT-like algorithms

• Search LWE: Find secret vector of polynomials 𝒔 in 𝑅67  given
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• Each equation is 𝑑 related equations 
on a secret of dimension 𝑛 = 𝑑 > 𝑘
• LWE: 𝑑 = 1, 𝑘 = 𝑛
• Ring-LWE: 𝑑 = 𝑛, 𝑘 = 1
• Module-LWE: Interpolate

• Decision LWE: Distinguish (𝒂# , 𝒃#) 
from uniform (𝒂# , 𝒃#) in 𝑅*8×𝑅*

+ =

∈ ℤ*7

⋆ 𝒆#9 𝒃#9𝒂#9𝒔-



Hardness of Ring/Module-LWE
• Theorem [LPR10]: For any 𝑅 = 𝒪3

• Can we dequantize the worst-case/average-case reduction?
• The classical GapSVP <= LWE reduction is of little use: for the relevant 

factors, GapSVP for ideals (i.e., 𝑘 = 1) is easy
• How hard (or not) is 𝐆𝐚𝐩𝐒𝐕𝐏 on ideal/module lattices?
• For polynomial approximation no significant improvement versus 

general lattices (even for ideals)
• For subexponential approximation we have better quantum 

algorithms for ideals, but not for 𝑘 > 1
• Reverse reductions? Seems not without increasing 𝑘…
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𝑅$−𝐆𝐚𝐩𝐒𝐕𝐏 ≤ 𝐬𝐞𝐚𝐫𝐜𝐡	𝑅$−𝐋𝐖𝐄𝐝𝐞𝐜𝐢𝐬𝐢𝐨𝐧	 ≤ 𝑅$−𝐋𝐖𝐄



Why Lattice-based Cryptography?
• Provable security
• If scheme is not secure, one can solve hard mathematical problems
• Not always happens in current implementations (e.g., RSA)

•Worst-case security
• If scheme not secure, one can break every instance of lattice problems
• Factoring and discrete log only guarantee average-case security

• Still unbroken by quantum algorithms
• No progress over the last 50 years 
• But we don’t know: see https://eprint.iacr.org/2024/555

• Efficiency
• Mainly additions/multiplications, no modular exponentiations
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https://eprint.iacr.org/2024/555
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Basic Cryptographic
Applications



One-Way Functions
• Parameters 𝑚, 𝑛, 𝑞 ∈ ℤ, key 𝑨 ∈ ℤ+"×,

• Input 𝒙 ∈ {0,1},, output 𝑓𝑨 𝒙 = 𝑨 + 𝒙
• Theorem [Ajt96]: For 𝑚 > 𝑛 log 𝑞, if 𝐒𝐈𝐕𝐏 is hard to 

approximate in the worst-case, then 𝑓𝑨 is one-way
• Cryptanalysis: Given 𝑨, 𝒚, find 𝒙 such that 𝒚 = 𝑨 + 𝒙 
• Easy problem: find arbitrary 𝒖 such that 𝒚 = 𝑨 > 𝒖
• All solutions 𝒚 = 𝑨 > 𝒙 are of the form 𝒕 + ℒ,(𝑨)
• Requires to find small vector in 𝒕 + ℒ,(𝑨) or to find a lattice point 
𝒗 ∈ ℒ,(𝑨) close to 𝒕 (average-case instance of CVP w.r.t. ℒ,(𝑨))
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Collision-resistant Hash Functions

• Given 𝑨 = 𝒂!, … , 𝒂, , define ℎ𝑨: {0,1},→ ℤ+"

ℎ𝑨 𝑧!, … , 𝑧, = 𝒂! + 𝑧! +⋯+ 𝒂, + 𝑧,
• Set 𝑚 > 𝑛 log 𝑞 in order to get compression
• A collision 𝒂! > 𝑧! +⋯+ 𝒂) > 𝑧) = 𝒂! > 𝑧!4 +⋯+ 𝒂) > 𝑧)4 yields 𝒂! >
(𝑧!−𝑧!4) + ⋯+ 𝒂) > (𝑧)−𝑧)4 ) = 0, with 𝑧) − 𝑧)4 ∈ {−1,0,1}
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Collisions exists 
inherently, but are 

hard to find 
efficiently

ℎ𝑨(+)

𝒛

𝒛6



Commitments
• Analogy: lock message in a box, give the box, keep the key
• Later give the key to open the box

• Implementation: 
• Randomized function 𝐂𝐨𝐦(𝑥; 𝑟), where 𝑥 is the message and 𝑟 is the 

randomness
• To open a commitment simply reveal (𝑥, 𝑟)

• Security properties
• Hiding: 𝐂𝐨𝐦(𝑥; 𝑟) reveals nothing on 𝑥
• Binding: Can’t open 𝐂𝐨𝐦(𝑥; 𝑟) to 𝑥′ ≠ 𝑥
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Commitments
• Take two random SIS matrices 𝑨!, 𝑨#
• The message is 𝒙 ∈ {0,1}, and the randomness is 𝒓 ∈ {0,1},

• Commitment: 𝐂𝐨𝐦 𝒙; 𝒓 = 𝑓𝑨$,𝑨% 𝒙, 𝒓 = 𝑨! + 𝒙 + 𝑨# + 𝒓
• Hiding: 𝑨& > 𝒓 = 𝑓𝑨" 𝒓  is statistically close to uniform over ℤ*", and 

thus 𝒙 is information-theoretically hidden
• Binding: Finding 𝒙, 𝒓  and 𝒙′, 𝒓′  such that 𝐂𝐨𝐦 𝒙; 𝒓 =
𝐂𝐨𝐦 𝒙′; 𝒓′  directly contradicts the collision resistance of 𝑓𝑨#,𝑨"
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Leftover Hash Lemma
• Let 𝐻 be a family of universal hash functions with domain 𝐷

and image 𝐼. Then, for 𝑥 ←$ 𝐷, ℎ ←$ 𝐻, and 𝑢 ←$ 𝐼: 
𝕊𝔻 ℎ, ℎ 𝑥 ; ℎ, 𝑢 ≤ 1/2 + 𝐼 /|𝐷|

• Note that the function ℎ7 𝑟 = 𝐴×𝑟 + is universal
• As ∀𝑟!≠ 𝑟&: ℙ< ℎ< 𝑟! = ℎ< 𝑟& = ℙ< 𝐴× 𝑟! − 𝑟& = 0 = 𝑞3"

• Hence, for 𝑟 ←$ {0,1},, 𝐴 ←$ ℤ+"×,, and 𝑢 ←$ ℤ+", whenever 
𝑚 = 2 + 𝑛 log 𝑞 + 2𝑛	
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𝕊𝔻 𝐴, 𝐴×𝑟 + ; 𝐴, 𝑢 ≤ 1/2 + 𝑞"/2, ≤ 28"
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NIST Standards
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Falcon



Lattice Trapdoors
• Recall: Lattice-based one-way functions

• Task: Invert 𝑓𝑨
• Find the unique 𝒔 (or 𝒆) such that 𝑓𝑨 𝒔, 𝒆 = 𝒔- > 𝑨 + 𝒆-	mod	𝑞
• Given 𝒖 = 𝑓𝑨 𝒙′ = 𝑨 > 𝒙′	mod	𝑞, sample random 𝒙 ← 𝑓𝑨3!(𝒖) with 

probability proportional to exp(− 𝒙 &/𝑠&)
• How? Via a strong trapdoor for𝑨 (a short basis of ℒ9(𝑨))
• Deeply studied question [Babai86,Ajtai99,Klein01,GPV08,AP09,P10]
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𝑓𝑨 𝒙 = 𝑨 > 𝒙	mod	𝑞 ∈ ℤ*" 𝑓𝑨 𝒔, 𝒆 = 𝒔- > 𝑨 + 𝒆-	mod	𝑞 ∈ ℤ*)

(short 𝒙, surjective) (short 𝒆, injective) 



A Different Kind of Trapdoor [MP12]
• Drawbacks of previous solutions
• Generating 𝑨 with short basis is complex and slow 
• Inversion algorithms trade-off quality (i.e., length of basis vectors which 

depends on the Gaussian std parameter 𝑠) for efficiency 
• Alternative: The trapdoor is not a basis
• But just as powerful
• Simpler and faster

• Overview of method
• Start with fixed, public, lattice defined by gadget matrix 𝑮 which admits 

very fast, and parallel, algorithms for 𝑓𝑮'( 
• Randomize 𝑮 into 𝑨 via nice unimodular transform (the trapdoor)
• Reduce 𝑓𝑨'( to 𝑓𝑮'( plus some pre/post-processing
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Step 1: The Gadget Matrix
• Let 𝑞 = 2$ and take 𝒈 = [1 2 ⋯ 2$8!] ∈ ℤ+!×$

• To invert 𝑓𝒈: ℤ+×ℤ$ → ℤ+$

• Get lsb of 𝑠 from 283!𝑠 + 𝑒83!, then repeat for the next bits of 𝑠
• Works when 𝑒83! ∈ [−𝑞/4, 𝑞/4)

• To sample Gaussian preimage for 𝑢 = 𝑓𝒈 𝒙 = 𝒈, 𝒙
• For 𝑖 ∈ [0, 𝑘 − 1], choose 𝑥# ← (2ℤ + 𝑢) and let 𝑢 ← (𝑢 − 𝑥#)/2 ∈ ℤ
• E.g., 𝑘 = 2: 𝑥= ← (2𝑧= + 𝑢), 𝑢 ← (𝑢 − 2𝑧= − 𝑢)/2 = −𝑧=, 𝑥! ←
(2𝑧! − 𝑧=), 𝒈, 𝒙 = 2𝑧= + 𝑢 + 2 2𝑧! − 𝑧= = 𝑢 + 4𝑧! = 𝑢	mod	4
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𝑓𝒈 𝑠, 𝒆 = 𝑠 > 𝒈 + 𝒆 = 𝑠 + 𝑒= 2𝑠 + 𝑒! ⋯ 283!𝑠 + 𝑒83! 	mod	𝑞



Step 1: The Gadget Matrix 𝑮
• Alternative view: The lattice ℒ9(𝒈) has basis

𝑺 =

2
−1 2

−1 ⋱
⋱ 2

−1 2

∈ ℤ8×8 , with	�𝑺 = 2 > 𝑰8

• The above inversion algorithms are special cases of the randomized 
nearest-plan algorithm [Bab86,Kle01,GPV08]

• Define 𝑮 = 𝑰"⨂𝒈 ∈ ℤ"×"$ (where ⨂ is the tensor product)
• Computing 𝑓𝑮3! reduces to 𝑛 parallel calls to 𝑓𝒈3!

• Also applies to 𝑯 > 𝑮, for any invertible 𝑯 ∈ ℤ*"×"
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Step 2: Randomize 𝑮
• Define semi-random [�𝑨|𝑮] for uniform �𝑨 ∈ ℤ+"× ;,
• It can be seen that inverting 𝑓[A𝑨|𝑮]

3! reduces to inverting 𝑓𝑮3! [CHKP10]

• Choose a short Gaussian 𝑹 ∈ ℤ ;,×" &'( + and let

• 𝑨 is uniform because, by the leftover hash lemma, [�𝑨|�𝑨𝑹] is 
statistically close to uniform when �𝑚 ≈ 𝑛 log 𝑞
• Alternatively, [𝑰 �𝑨 − �𝑨 > 𝑹! + 𝑹&] is pseudorandom under the LWE 

assumption (in normal form)
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𝑨 = [�𝑨|𝑮] > 𝑰 𝑹
𝑰 = [�𝑨|𝑮 − �𝑨𝑹]



A New Trapdoor Notion
•We constructed 𝑨 = [�𝑨|𝑮 − �𝑨𝑹]
• Say that 𝑹 is a trapdoor for 𝑨 with tag 𝑯 ∈ ℤ+"×" (invertible) if

• The quality of 𝑹 is 𝑠! 𝑹 = max
𝒖: 𝒖 %!

𝑹 > 𝒖
• Fact: 𝑠! 𝑹 ≈ ( rows + cols) > 𝑟 for Gaussian entries w/ std dev 𝑟
• Also 𝑹 is a trapdoor for 𝑨 − [𝟎|𝑯′ > 𝑮] with tag 𝑯−𝑯4 [ABB10]

• Relating new and old trapdoors
• Given basis 𝑺 for ℒ,(𝑮) and trapdoor 𝑹 for 𝑨, one can efficiently

construct basis 𝑺𝑨 for ℒ,(𝑮) where �𝑺𝑨 ≤ (𝑠! 𝑹 + 1) > �𝑺
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𝑨 > 𝑹𝑰 = 𝑯 > 𝑮



Step 3: Reduce 𝑓𝑨�� to 𝑓𝑮��

• Let 𝑹 be a trapdoor for 𝑨 with tag 𝑯 = 𝑰: 𝑨 + 𝑹𝑰 = 𝑮

• Inverting LWE
• Given 𝒃- = 𝒔- > 𝑨 + 𝒆-, recover 𝒔 from 𝒃- > 𝑹𝑰 = 𝒔- > 𝑮 + 𝒆- > 𝑹𝑰
• Works if each entry of 𝒆- > 𝑹𝑰 ∈ [−𝑞/4, 𝑞/4)

• Inverting SIS
• Given 𝒖, sample 𝒛 ← 𝑓𝑮3!(𝒖) and output 𝒙 = 𝑹

𝑰 > 𝒛 ∈ 𝑓𝑨3! (𝒖)
• Indeed, 𝑨 > 𝒙 = 𝑮 > 𝒛 = 𝒖
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𝜮 = 𝔼𝒙[𝒙 > 𝒙-] = 𝔼𝒛[𝑹 > 𝒛 > 𝒛- > 𝑹-] ≈ 𝑹 > 𝑹-
Leaks about 𝑹!



Step 3: Perturbation Method [P10]

• To fix the covariance
• Generate perturbation vector 𝒑 with covariance 𝑠& > 𝑰 − 𝑹 > 𝑹-
• Sample spherical 𝒛 such that 𝑮 > 𝒛 = 𝒖 − 𝑨 > 𝒑
• Output 𝒙 = 𝒑 + 𝑹

𝑰 > 𝒛
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𝑨 > 𝒙 = 𝑨 > 𝒑 + 𝑨 > 𝑹𝑰 > 𝒛 = 𝑨 > 𝒑 + 𝑮 > 𝒛 = 𝒖

+ =

𝜮! 𝜮& = 𝑠& > 𝑰 − 𝜮! 𝜮 = 𝑠& > 𝑰

𝒖- > 𝜮& > 𝒖 = 𝑠& − 𝒖- > 𝜮! > 𝒖 > 0



Falcon: Digital Signatures from SIS
• Generate uniform 𝑣𝑘 = 𝑨 with trapdoor 𝑠𝑘 = 𝑻
• To sign 𝜇, use 𝑻 to sample 𝜎 = 𝒙 ∈ ℤ, such that 𝑨 + 𝒙 = 𝐻(𝜇), 

where 𝐻 is a public hash function 
• Recall that 𝒙 is drawn from a Gaussian distribution, which reveals 

nothing about the trapdoor 𝑻
• To verify (𝜇, 𝜎 = 𝒙) under 𝑣𝑘 = 𝑨 simply check 𝑨 + 𝒙 = 𝐻(𝜇) 

and that 𝒙 is sufficiently short
• Security: Forging a signature for a new message 𝜇∗ requires 

finding a short 𝒙∗ such that 𝑨 + 𝒙∗ = 𝐻(𝜇∗)
• This is equivalent to solving the SIS problem
• Signatures queries do not help because they reveal nothing about the 

trapdoor 𝑻
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Crystals-Dilithium



Canonical Identification Schemes

• Completeness: The honest prover convinces the honest verifier 
(with all but a negligible probability)
• Passive Security: No (efficient) malicious prover knowing only 
𝑝𝑘 can convince the honest verifier
• Even in case the attacker knows many accepting transcripts 

corresponding to honest protocol executions
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𝛼

𝑝𝑘, 𝑠𝑘

𝛽
𝛾

𝛽 ←$ ℬ

𝑝𝑘



The Fiat-Shamir Transform

• Given a canonical ID scheme, we can derive a signature scheme 
as follows:
• Alice obtains σ = (𝛼, 𝛾) from the prover, using the secret key 𝑠𝑘 and 

choosing 𝛽 = 𝐻(𝑥, 𝛼)
• Bob checks that (𝛼, 𝛽, 𝛾) is a valid transcript, with 𝛽 = 𝐻(𝑥, 𝛼)
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𝑝𝑘, 𝑠𝑘 𝑝𝑘

Hash function 𝐻

𝛼

𝑝𝑘, 𝑠𝑘 𝑝𝑘
𝛽 = 𝐻(𝑥, 𝛼)

𝛾

𝛽 FS Transform
𝜎 = (𝛼, 𝛾)



The Fiat-Shamir Transform

• Remark: The original proof requires to model 𝐻 as an ideal hash 
function (random oracle)
• It is debatable in the community what such a proof means in practice

• Can we prove security in the plain model (i.e., no random 
oracles)?
• Many impossibility results for general ID schemes [???]
• Possible for some classes of ID schemes assuming so-called 

correlation intractability [???]
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Theorem [FS86]. If the ID scheme is passively secure, the 
signature derived via the Fiat-Shamir transform is UF-CMA



Sufficient Criteria for Passive Security

• One can show the following criteria are sufficient for achieving 
passive security:
• Special soundness: Given any 𝑝𝑘 and two accepting transcripts 
(𝛼, 𝛽, 𝛾) and (𝛼, 𝛽′, 𝛾′) for 𝑝𝑘 with 𝛽 ≠ 𝛽′, there is a polynomial-time 
algorithm outputting 𝑠𝑘
• HVZK: Honest proofs reveal nothing about the secret key sk
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𝛼

𝑝𝑘, 𝑠𝑘

𝛽
𝛾

𝛽 ←$ ℬ

𝑝𝑘



Proofs of Knowledge
• The special soundness property implies that any successful 

prover must essentially know the secret key
• In fact, any such prover can be used to extract the secret key:
• Run the prover upon input 𝑝𝑘 in order to obtain a transcript (𝛼, 𝛽, 𝛾)
• Rewind the prover after it already sent 𝛼 and forward it another 

random challenge 𝛽′, which yields a transcript (𝛼, 𝛽′, 𝛾′)
• As long as 𝛽 ≠ 𝛽′, special soundness allows us to obtain 𝑠𝑘

• The above can be formalized, but the proof requires some care
• Because the transcripts (𝛼, 𝛽, 𝛾) and (𝛼, 𝛽′, 𝛾′) are correlated
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Honest-Verifier Zero-Knowledge
• How do we formalize that a trascript reveals nothing on 𝑠𝑘?
• This is tricky: transcripts shall not reveal even one bit of 𝑠𝑘

• Require that honest transcripts can be efficiently simulated 
given just 𝑝𝑘 (but not 𝑠𝑘)
• Whatever the verifier could compute via the protocol, he could have 

computed by talking to himself (i.e., by running the simulator)
• A canonical ID scheme is perfect honest-verifier zero-

knowledge (HVZK) if ∃	PPT	𝒮 such that:
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𝑝𝑘, 𝑠𝑘, 𝒮 𝑝𝑘 ≡ 𝑝𝑘, 𝑠𝑘, 𝒫 𝑝𝑘, 𝑠𝑘 , 𝒱 𝑝𝑘



Canonical ID Scheme from Discrete Log
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• Special HVZK: Upon input 𝑝𝑘 = 𝑥, simulator 𝒮 outputs (𝛼, 𝛽, 𝛾) 
such that 𝛼 = 𝑔%/𝑥=  and 𝛽, 𝛾 ←$ ℤ+
• Special soundness: Assume we are given two accepting 

transcripts (𝛼, 𝛽, 𝛾) and (𝛼, 𝛽′, 𝛾′) for 𝑝𝑘 = 𝑥, with 𝛽 ≠ 𝛽′
• This implies 𝑔(3(4 = 𝑥G3G$

• Thus, 𝑤 = (𝛾 − 𝛾4) > (𝛽 − 𝛽′)3! is the discrete logarithm of 𝑥

𝛼 = 𝑔H

𝑥, 𝑤

𝑎 ←$ ℤ4
𝛾 = 𝛽 + 𝑤 + 𝑎 𝛽

𝛾
𝛽 ←$ ℤ4

Check 𝑔( = 𝑥G > 𝛼

params = (𝔾, 𝑔, 𝑞) 𝑥 = 𝑔I



Let’s Try the Same Idea using Lattices
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• HVZK: Upon input 𝑝𝑘 = (𝑨, 𝒕), simulator 𝒮 outputs (𝜶, 𝛽, 𝜸) 
such that 𝜶 = 𝑨 + 𝜸 − 𝛽 + 𝒕 and 𝛽 ←$ ℤ+ , 𝜸 ←$ ℤ+,

• Special soundness: Assume we are given two accepting 
transcripts(𝜶, 𝛽, 𝜸) and(𝜶, 𝛽′, 𝜸′) for 𝑝𝑘 = (𝑨, 𝒕), with 𝛽 ≠ 𝛽′
• This implies 𝑨 > 𝜸 − 𝜸4 = (𝛽 − 𝛽4) > 𝒕
• Thus, 𝒔 = 𝜸 − 𝜸4 > (𝛽 − 𝛽4)3! is the solution for 𝑨 > 𝒔 = 𝒕

𝜶 = 𝑨 > 𝒖

(𝑨, 𝒕), 𝒔

𝒖 ←$ ℤ43
𝜸 = 𝛽 + 𝒔 + 𝒖 𝛽

𝜸
𝛽 ←$ ℤ4

Check 𝑨 > 𝜸 = 𝛽 > 𝒕 + 𝜶

params = 𝑞 𝑨 > 𝒔 = 𝒕



Many Problems…
• The challenge space is small
• 𝑞 ≈ 2!& for encryption
• 𝑞 ≈ 2J= for signatures
• 𝑞 ≈ 2J& for advanced applications

• This means that a successful prover can just guess 𝛽
• The vector 𝒔 we extract is not guaranteed to be small
• Recall that removing the requirement of 𝒔 being small makes lattice 

problems trivial
• Solution: Choose small 𝒖, 𝛽 and repeat the protocol in parallel
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Modified Protocol (Take 1)
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𝜶!, … , 𝜶8

(𝑨, 𝒕), 𝒔

𝒖1, … , 𝒖8 ←$ {0,1}3
𝜶9 = 𝑨 + 𝒖9

𝜸9 = 𝛽9 + 𝒔 + 𝒖9
𝛽!, … , 𝛽8
𝜸!, … , 𝜸8

𝛽9 ←$ {0,1}

Check 𝑨 > 𝜸$ = 𝛽$ > 𝒕 + 𝜶$

𝑨 > 𝒔 = 𝒕

• The verifier checks the above ∀𝑗 = 1,… , 𝑘 and that the 
coefficients of each 𝜸>  are small (i.e., in {0,1,2})
• Special soundness: Given 𝑨 + 𝜸> = 𝛽> + 𝒕 + 𝜶>  and 𝑨 + 𝜸>0 =
𝛽>0 + 𝒕 + 𝜶>  with 𝛽> ≠ 𝛽>0, extract 𝒔 = 𝜸> − 𝜸>0 + (𝛽> − 𝛽>0)8!
• The elements of 𝜸$ − 𝜸$4  are in {−2,−1,0,1,2}, and 𝛽$ − 𝛽$4 is in 
{−1,1}, so 𝒔 also lies in {−2,−1,0,1,2}



Insecurity of the Protocol
• There are some caveats:
• We extracted a slightly bigger secret
• We need to repeat for 𝑘 = 128 or 𝑘 = 256 times

• Even worse, the protocol does not satisfy HVZK
• Suppose that the challenge is 𝛽 = 1
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𝟎 𝟏 𝟐 𝟏 𝟐 𝟎 ? 𝟎 ? ?

𝟎 ? 𝟏 ? 𝟏 𝟎 ? 𝟎 ? ?

𝟎 ? 𝟏 ? 𝟏 𝟎 ? 𝟎 ? ?
+

=

𝛽 > 𝒔 = 𝒔 has coefficients in {0,1}

𝒖 has coefficients in {0,1}

𝜸 coefficients



Possible Fix?
•Maybe we can sample 𝒖 from a larger domain?
• Suppose that the challenge is 𝛽 = 1

• Whenever a 𝜸 coefficient is 0 or 6 we know that 𝒔 is 0 or 1, but the 
other coefficients are hidden (i.e., they could be equally 0 or 1) 
• So, 𝒔 only effects the probability that a 𝜸 coefficient is 0 or 6 
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𝟎 𝟒 𝟐 𝟑 𝟔 𝟓 𝟎 𝟐 𝟒 𝟏

𝟎 ? ? ? 𝟓 ? 𝟎 ? ? ?

𝟎 ? ? ? 𝟏 ? 𝟎 ? ? ?
+

=

𝛽 > 𝒔 = 𝒔 has coefficients in {0,1}

𝒖 has coefficients in {0,1,2,3,4,5}

𝜸 coefficients



Possible Fix?
•Maybe we can sample 𝒖 from a larger domain?
• Suppose that the challenge is 𝛽 = 1

• In other words, the coefficients 1,2,3,4,5 are equally likely to appear 
regardless of the secret key
• Natural idea: Send 𝜸 only when all the coefficients are in this range
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𝟎 𝟒 𝟐 𝟑 𝟔 𝟓 𝟎 𝟐 𝟒 𝟏

𝟎 ? ? ? 𝟓 ? 𝟎 ? ? ?

𝟎 ? ? ? 𝟏 ? 𝟎 ? ? ?
+

=

𝛽 > 𝒔 = 𝒔 has coefficients in {0,1}

𝒖 has coefficients in {0,1,2,3,4,5}

𝜸 coefficients



In General…
• Suppose 𝒔 has coefficients in {0,1, … , 𝑎} and that 𝒖 has 

coefficients in 0,1, … , 𝑏 − 1  
• Here, 𝑏 > 𝑎

• Then, for all 𝑎 ≤ 𝑖 < 𝑏, we have ℙ 𝑠 + 𝑢 = 𝑖 = 1/𝑏
• Moreover, there are 𝑏 − 𝑎 such 𝑗’s and thus 1 − 𝑎/𝑏 probability of 

keeping the value 𝑠 secret
• The probability that a 𝜸 coefficient is in 1,… , 𝑏 − 1  is 1 − 1/𝑏
• The probability that they all are is (1 − 1/𝑏))
• The probability that they all are for all 𝜸!, … , 𝜸8  is (1 − 1/𝑏))8
• By setting 𝑏 = 𝑚𝑘, we get (1 − 1/𝑏))8≈ 1/𝑒
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Modified Protocol (Take 2)
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𝜶!, … , 𝜶8

(𝑨, 𝒕), 𝒔

𝒖1, … , 𝒖8 ←$ {0, … ,𝑚𝑘}3
𝜶9 = 𝑨 + 𝒖9

𝜸9 = 𝛽9 + 𝒔 + 𝒖9
𝛽!, … , 𝛽8
𝜸!, … , 𝜸8

𝛽9 ←$ {0,1}

Check 𝑨 > 𝜸$ = 𝛽$ > 𝒕 + 𝜶$

𝑨 > 𝒔 = 𝒕

• The prover checks whether any of the coefficients contained 
in 𝜸>  is 0 or 𝑚𝑘 + 1 
• If it is, abort and restart the protocol

• The verifier checks the above ∀𝑗 = 1,… , 𝑘 and that the 
coefficients of each 𝜸>  are small (i.e., in {0, … ,𝑚𝑘})



Modified Protocol (Take 2)
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𝜶!, … , 𝜶8

(𝑨, 𝒕), 𝒔

𝒖1, … , 𝒖8 ←$ {0, … ,𝑚𝑘}3
𝜶9 = 𝑨 + 𝒖9

𝜸9 = 𝛽9 + 𝒔 + 𝒖9
𝛽!, … , 𝛽8
𝜸!, … , 𝜸8

𝛽9 ←$ {0,1}

Check 𝑨 > 𝜸$ = 𝛽$ > 𝒕 + 𝜶$

𝑨 > 𝒔 = 𝒕

• Special soundness: Given 𝑨 + 𝜸> = 𝛽> + 𝒕 + 𝜶>  and 𝑨 + 𝜸>0 =
𝛽>0 + 𝒕 + 𝜶>  with 𝛽> ≠ 𝛽>0, extract 𝒔 = 𝜸> − 𝜸>0 + (𝛽> − 𝛽>0)8!
• The elements of 𝜸$ − 𝜸$4  are in {−𝑚𝑘,…𝑚𝑘}, and 𝛽$ − 𝛽$4 is in 
{−1,1}, so 𝒔 also lies in {−𝑚𝑘,… ,𝑚𝑘}

• HVZK: Yes, as now 𝜸>  never depends on 𝒔
• Caveat: What is 𝜶$  in case of abort?



Modified Protocol (Take 3)
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𝛼 = 𝐇 𝜶!, … , 𝜶8

(𝑨, 𝒕), 𝒔

𝒖1, … , 𝒖8 ←$ {0, … ,𝑚𝑘}3
𝜶9 = 𝑨 + 𝒖9

𝜸9 = 𝛽9 + 𝒔 + 𝒖9
𝛽!, … , 𝛽8
𝜸!, … , 𝜸8

𝛽9 ←$ {0,1}

Check 𝑨 > 𝜸$ = 𝛽$ > 𝒕 + 𝜶$

𝑨 > 𝒔 = 𝒕

• The verifier checks the above ∀𝑗 = 1,… , 𝑘 and that the 
coefficients of each 𝜸>  are small (i.e., in {0, … ,𝑚𝑘})
• But now it also additionally checks that

• In case of abort, the HVZK simulator can still send a random 𝛼 

𝛼 = 𝐇 𝑨 > 𝜸! − 𝛽! > 𝒕, … , 𝑨 > 𝜸8 − 𝛽8 > 𝒕



In Practice
• The previous protocol still needs to be repeated in parallel 𝑘 =
128 or 256 times
• And this is the best one can get for arbitrary lattices

• However:
• The proof size for one equation is roughly the same as the proof size 

for many equations (amortization with logarithmic growth)
• Working with polynomial rings instead of ℤ*  allows for one-shot 

approximate proofs (i.e., the coefficients of 𝒔 are small)
• Using more complex techniques, one obtains almost one-shot exact 

proofs (i.e., the coefficients of 𝒔 are in {0,1})
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Crystals-Kyber



Regev PKE [Reg05]
• Key Generation: 𝑝𝑘 = (𝑨, 𝒃) and 𝑠𝑘 = 𝒔, where 𝒃- = 𝒔- > 𝑨 + 𝒆- and 
𝒔 ∈ ℤ*" , 𝑨 ∈ ℤ*"×)

• Encryption: The encryption of 𝑥 w.r.t. 𝑝𝑘 is made of two parts
• Ciphertext preamble 𝒄= = 𝑨 > 𝒓 for random 𝒓 ∈ {0,1})
• Ciphertext payload 𝑐! = 𝒃- > 𝒓 + 𝑥 > 𝑞/2
• Bob outputs 𝑐! − 𝒔- > 𝒄= ≈ 𝑥 > 𝑞/2

• Security: By LWE we can switch (𝑨, 𝒃) with (𝑨, 𝒃) for uniformly 
random 𝒃.
• By the leftover hash lemma, we can finally replace 𝒄= with uniformly 

random 𝒄=, so that 𝑐! hides 𝑥 information theoretically
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Dual Regev [GPV08]
• Key Generation: 𝑝𝑘 = (𝑨, 𝒖) and 𝑠𝑘 = 𝒓, where 𝒖 = 𝑨 > 𝒓 and 𝒓 ∈
{0,1}) , 𝑨 ∈ ℤ*"×)

• Encryption: The encryption of 𝑥 w.r.t. 𝑝𝑘 is made of two parts
• Ciphertext preamble 𝒄= = 𝒃- = 𝒔- > 𝑨 + 𝒆- for random 𝒔 ∈ ℤ*"
• Ciphertext payload 𝑐! = 𝒔- > 𝒖 + 𝑒4 + 𝑥 > 𝑞/2
• Bob outputs 𝑐! − 𝒄= > 𝒓 ≈ 𝑥 > 𝑞/2

• Security: By the leftover hash lemma, we can switch 𝒖 with 
uniformly random 𝒖 
• By LWE we can switch (𝒄=, 𝑐!) with uniformly random (𝒄=, 𝑐!)
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Primal versus Dual
• Public key
• Primal: 𝑝𝑘 is pseudorandom with unique 𝑠𝑘
• Dual: 𝑝𝑘 is statistically random with many possible 𝑠𝑘

• Ciphertext
• Primal: A fresh LWE sample with many possible coins
• Dual: Multiple LWE samples with unique coins

• Security
• Primal: Encrypting with uniform 𝑝𝑘 induces random ciphertext
• Dual: By LWE can switch the ciphertext to random

• Efficiency: The matrix 𝐴 can be shared by different users
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Most Efficient [LP11]
• Key Generation: 𝑝𝑘 = (𝑨, 𝒖) and 𝑠𝑘 = 𝒔, where 𝒖- = 𝒔- > 𝑨 + 𝒆- 

and 𝒔 ∈ 𝜒" , 𝑨 ∈ ℤ*"×"

• Encryption: The encryption of 𝑥 w.r.t. 𝑝𝑘 is made of two parts
• Ciphertext preamble 𝒄= = 𝑨 > 𝒓 + 𝒆′ for 𝒓 ∈ 𝜒"
• Ciphertext payload 𝑐! = 𝒖- > 𝒓 + 𝑒4 + 𝑥 > 𝑞/2
• Bob outputs 𝑐! − 𝒔- > 𝒄= ≈ 𝑥 > 𝑞/2

• Security: By LWE we can switch (𝑨, 𝒖) with (𝑨, 𝒖) for uniformly 
random 𝒖
• This requires LWE with secrets from the error distribution
• Next, we can replace (𝒄=, 𝑐!) with uniformly random (𝒄=, 𝑐!)
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Fujisaki-Okamoto Transform
• The FO transform [FO99,FO13] turns passively (IND-CPA) secure 

PKE schemes into actively (IND-CCA) secure ones
• The transformation requires two hash functions (random oracles)
• The obtained scheme is better understood as a key encapsulation 

mechanism (KEM)

• We can combine a KEM with an SKE scheme to get a PKE scheme
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𝑘Alice Bob𝐄𝐧𝐜 𝐃𝐞𝐜

𝑝𝑘 𝑠𝑘

𝑘𝑐
ciphertext



One-Wayness of PKE
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𝑚′

𝑝𝑘, 𝑐∗

𝑝𝑘, 𝑠𝑘
𝑚∗ ←ℳ

𝑐∗ ← 𝐄𝐧𝐜(𝑝𝑘,𝑚∗)

Eve

Challenger

• OW-CPA: PKE makes it hard to guess the message
• The message is uniformly random and unknown to the attacker

• OW-PCA: As before but now the attacker can query a plaintext-
checking oracle which allows to check if 𝐃𝐞𝐜 𝑠𝑘, 𝑐 = 𝑚

𝑚, 𝑐
yes/no



Modularization of the FO Transform

•We can view FO as the concatenation of two transforms 𝐔 ∘ 𝐓
• The first transformation takes care of derandomization and allows to 

go from IND-CPA to OW-PCA
• The second transformation takes care of hashing and allows to go 

from OW-PCA to IND-CCA
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𝐏𝐊𝐄
IND-CPA

𝐏𝐊𝐄
OW-CPA

𝐏𝐊𝐄
OW-PCA

𝐊𝐄𝐌
IND-CCA



Transformation 𝐓: From IND-CPA to OW-PCA

• Encryption becomes deterministic (the randomness is 𝐆(𝑚))
• Decryption re-encrypts 𝑚′ using randomness 𝐆(𝑚′) and 

outputs 𝑚′ if and only if it obtains 𝑐
• Theorem [HKK17]: Assuming 𝐄𝐧𝐜, 𝐃𝐞𝐜  is IND-CPA (OW-CPA), 
𝐄𝐧𝐜′, 𝐃𝐞𝐜′  is OW-PCA
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𝐄𝐧𝐜𝐆

𝑝𝑘

𝑚

𝐃𝐞𝐜𝑟 𝑐 𝑐 𝑚′

𝑠𝑘



Transformation 𝐔: From OW-PCA to IND-CCA

• Encapsulation outputs 𝑘 = 𝐇(𝑐,𝑚) and 𝑐
• Decapsulation obtains 𝑚0 = 𝐃𝐞𝐜(𝑠𝑘, 𝑐) and outputs 𝑚′
• Here, 𝑚′ could be ⊥ (explicit rejection)

• Theorem [HKK17]: Assuming 𝐄𝐧𝐜′, 𝐃𝐞𝐜′  is OW-PCA, 
𝐄𝐧𝐜𝐚𝐩𝐬, 𝐃𝐞𝐜𝐚𝐩𝐬  is IND-CCA
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𝐄𝐧𝐜′

𝑝𝑘

𝑚 ←ℳ

𝐃𝐞𝐜′𝑐 𝑐 𝑚′

𝑠𝑘

𝐇 𝑐𝑘
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Advanced Cryptographic 
Applications



Computing over Encrypted Data
• Can we have a (public-key) encryption scheme which allows to 

run computations over encrypted data?
• Question dating back to the late 70s
• Ron Rivest and "privacy homomorphisms"

• Partial solutions known
• E.g., RSA and Elgamal enjoy limited forms of homomorphism

• First solution by Craig Gentry after 30 years
• The "Swiss Army knife of cryptography"
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Motivation: Outsourcing of Computation

• Email, web search, navigation, social networking, …
•What about private 𝑥?
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𝑥
𝑓(𝑥) 𝑓(>)



Outsourcing of Computation - Privately
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𝐄𝐧𝐜(𝑝𝑘, 𝑥)

𝑦
𝐃𝐞𝐜(𝑠𝑘, 𝑦)
= 𝑓(𝑥)

Wish: Homomorphic evaluation function:
𝐄𝐯𝐚𝐥: 𝑝𝑘, 𝑓, 𝐄𝐧𝐜(𝑝𝑘, 𝑥) → 𝐄𝐧𝐜(𝑝𝑘, 𝑓(𝑥))

𝑓(>)



Fully-Homomorphic Encryption (FHE)
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𝑐 = 𝐄𝐧𝐜 𝑝𝑘, 𝑥

𝑦 = 𝐄𝐯𝐚𝐥(𝑝𝑘, 𝑓, 𝑐)

Correctness:
𝐃𝐞𝐜 𝑠𝑘, 𝑦 = 𝑓(𝑥)

𝑝𝑘, 𝑠𝑘 𝑝𝑘
𝑓(>)

Privacy:
𝐄𝐧𝐜 𝑝𝑘, 𝑥 ≈ 𝐄𝐧𝐜 𝑝𝑘, 0|K|

FHE = Correctness ∀ efficient 𝑓 =  Correctness for universal set

• NAND
• (+,×) over a ringLevelled FHE: Bounded depth 𝑓



A Paradox (and its Resolution)

• But remember that encryption is randomized!
• Output of 𝐄𝐯𝐚𝐥 will look as a fresh and random ciphertext
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𝑐! = 𝐄𝐧𝐜 𝑝𝑘, 𝑥!
𝑐& = 𝐄𝐧𝐜 𝑝𝑘, 𝑥&
𝑐J = 𝐄𝐧𝐜 𝑝𝑘, 𝑥J

𝐄𝐯𝐚𝐥 𝑝𝑘, 𝑓, (𝑐!, 𝑐&, 𝑐J)

𝐄𝐧𝐜 𝑝𝑘, 𝑥&

𝑓(𝑥!, 𝑥&, 𝑥J) = Æ𝑥&	if	𝑥! = 0
𝑥J	if	𝑥! = 1

AH! So 𝑥! = 0



Trivial FHE?
• Let (𝐊𝐆𝐞𝐧, 𝐄𝐧𝐜, 𝐃𝐞𝐜) be any PKE scheme
• Define the following fully-homomorphic PKE 
(𝐊𝐆𝐞𝐧, 𝐄𝐧𝐜, 𝐄𝐯𝐚𝐥0, 𝐃𝐞𝐜0):
• 𝐄𝐯𝐚𝐥4 𝑝𝑘, Γ, 𝑐 = (Γ, 𝑐)
• 𝐃𝐞𝐜′ 𝑠𝑘, 𝑐 = Γ(𝐃𝐞𝐜 𝑠𝑘, 𝑐 )
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Wish: Complexity of decryption much less
than running the circuit from scratch



The Gentry-Sahai-Waters FHE Scheme
• In what follows we will present the FHE scheme due to:
• C. Gentry, A. Sahai, B. Waters: "Homomorphic Encryption from 

Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, 
Attribute-Based." CRYPTO 2013

• Based on the Learning with Errors (LWE) assumption
• Only achieves levelled homomorphism
• But can be bootstrapped to full homomorphism using a trick by 

Gentry (under additional assumptions)

• Plaintext space will be ℤ+ = [−𝑞/2, 𝑞/2), for a large prime 𝑞
• For simplicity let us write 𝑎 *  for 𝑎	mod	𝑞
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Eigenvectors Method (Basic Idea)
• Let 𝐶! and 𝐶# be matrices for eigenvector 𝑠, and eigenvalues
𝑥!, 𝑥# (i.e., 𝑠×𝐶? = 𝑥? + 𝑠)
• 𝐶! + 𝐶& has eigenvalue 𝑥! + 𝑥& w.r.t. 𝑠
• 𝐶!×𝐶& has eigenvalue 𝑥! > 𝑥& w.r.t. 𝑠

• Idea: Let 𝐶 be the ciphertext, 𝑠 be the secret key and 𝑥 be the 
plaintext (say over ℤ+)
• Homomorphism for addition/multiplication
• But insecure: Easy to compute eigenvalues
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Approximate Eigenvectors (1/2)
• Approximate variant: 𝑠×𝐶 = 𝑥 + 𝑠 + 𝑒 ≈ 𝑥 + 𝑠
• Decryption works as long as 𝑒 L ≪ 𝑞

• Goal: Define homomorphic operations
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𝑠×𝐶! = 𝑥! + 𝑠 + 𝑒!
𝑒! @ ≪ 𝑞

𝑠×𝐶# = 𝑥# + 𝑠 + 𝑒#
𝑒# @ ≪ 𝑞

𝐶ABB = 𝐶! + 𝐶#:
𝑠×(𝐶!+𝐶#) = 𝑠×𝐶! + 𝑠×𝐶#
	 = 𝑥! + 𝑠 + 𝑒! + 𝑥# + 𝑠 + 𝑒#
	 = 𝑥! + 𝑥# + 𝑠 + (𝑒! + 𝑒#)

Noise grows a 
little!



Approximate Eigenvectors (2/2)
• Approximate variant: 𝑠×𝐶 = 𝑥 + 𝑠 + 𝑒 ≈ 𝑥 + 𝑠
• Decryption works as long as 𝑒 L ≪ 𝑞

• Goal: Define homomorphic operations
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𝑠×𝐶! = 𝑥! + 𝑠 + 𝑒!
𝑒! @ ≪ 𝑞

𝑠×𝐶# = 𝑥# + 𝑠 + 𝑒#
𝑒# @ ≪ 𝑞

𝐶CD&. = 𝐶!×𝐶#:
𝑠×(𝐶!×𝐶#) = (𝑥!+ 𝑠 + 𝑒!)×𝐶#
	 = 𝑥! + (𝑥#+ 𝑠 + 𝑒#) + 𝑒!×𝐶#
	 = 𝑥! + 𝑥# + 𝑠 + (𝑥!+ 𝑒# + 𝑒!×𝐶#)

Noise grows! 
Needs to be 

small!



Shrinking Gadgets
•Write entries in 𝐶 using binary decomposition; e.g.

• Reverse operation:
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𝐶 = 3 5
1 4 mod	8

yields
bits 𝐶 =

0 1
1 0
1 1
0 1
0 0
1 0

mod	8

𝐶 = 𝐺×𝐺8! 𝐶 =
2E8! … 2 1 0 … 0 0
0 … 0 0 2E8! … 2 1	

×bits 𝐶
𝑘 N𝑁 = 𝑘 log 𝑞

⇒ 𝑠×𝐶 = 𝑠×𝐺×𝐺8!(𝐶)



LWE – Rearranging Notation
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+

=

𝑠
𝐴

η

𝑏

∈ ℤ*"

∈ ℤ*)Small noise ∈ ℤ*)
η# ≤ 𝛼𝑞; 𝛼 ≪ 1

𝑠
𝐴

−1

𝑏

= η

New secret 𝑠 ∈ ℤ*"/!

New matrix 
𝐴′ ∈ ℤ*

"/! ×)

LWE: 𝐴′ = (𝐴||𝑏) ≈* 𝐔+
("G!)×,

𝑏 = 𝑠×𝐴 + η



Regev PKE – Pictorially
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𝑠

= η

𝐴

𝐴 +𝑟 𝑦⃗ = 𝑐S

∈ ℤ&)

𝑠
𝑐S

𝑟×η 𝑠×𝑦⃗+=

small noisepublic key

encoding of bit 𝑥

E.g., 𝑦⃗ = 𝑥 > ⁄𝑞 2 > (0, … , 0, −1)



The GSW Scheme
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𝑠

= η

𝐴

public key

𝐃𝐞𝐜 𝑠, 𝐶 = 𝑠×𝐶×𝐺8! (0, … , 0, − 𝑞/2 )
= 𝑒×𝐺8! ⋯ + 𝑥 + 𝑠×𝐺×𝐺8! (0, … , 0, − 𝑞/2 )
= 𝑒×𝐺8! ⋯ + 𝑞/2 + 𝑥 = 𝑧

𝐄𝐧𝐜 𝐴, 𝑥; 𝑅 = [𝐴×𝑅 + 𝑥 > 𝐺]*
                 = 𝐶KNT

Invariant: 𝑠×𝐶 = 𝑒 + 𝑥 > 𝑠×𝐺

Output: 0 ⇔ 𝑧 < 𝑞/4

∈ ℤ&)×U = ℤ&
)×"N VWX*

∈ ℤ*"×)
𝑒 L = η×𝑅 L ≤ (𝛼𝑞) > 𝑚 = 𝑛 > 𝑚



The GSW Scheme – Homomorphism 
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𝑠×𝐶!×𝐺8! 𝐶# = (𝑒! + 𝑥! + 𝑠×𝐺) + 𝐺8!(𝐶#)
= 𝑒!×𝐺8! 𝐶# + 𝑥! + 𝑠×𝐺×𝐺8! 𝐶#
= 𝑒!×𝐺8! 𝐶# + 𝑥! + 𝑠×𝐶#
= 𝑒!×𝐺8! 𝐶# + 𝑥! + 𝑒# + 𝑥# + 𝑠×𝐺
= 𝑒!×𝐺8! 𝐶# + 𝑥! + 𝑒# + 𝑥!𝑥# + 𝑠×𝐺
= 𝑒CD&. + 𝑥!𝑥# + 𝑠×𝐺

Invariant: 𝑠×𝐶 = 𝑒 + 𝑥 + 𝑠×𝐺

𝐶CD&. = 𝐶!×𝐺8!(𝐶#)

𝑒CD&. @ ≤ 𝑁 + 𝑒! @ + 𝑒# @ ≤ (𝑁 + 1) + max{ 𝑒! , 𝑒# }



The GSW Scheme – Correctness
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𝑒YZ

𝑒W[-

𝑒IJ @ ≤ 𝑚 + 𝑛 = 𝑚 + 𝛼𝑞

𝑒IG! @ ≤ (𝑁+ 1) 𝑒I @

𝑒'D. @ ≤ (𝑁 + 1)KG!𝑚 + 𝛼𝑞

Correctness:
𝑛 > 𝑚 > 𝑁 + 1 \/! < 𝑞/4

De
pt

h 
𝜏



The GSW Scheme – Semantic Security
• Similar as in the proof of Regev PKE
• Using LWE we move to a mental experiment with 𝐴 ←$ ℤ+"×,

• Hence, by the leftover hash lemma, with 𝑚 = Θ(𝑛 log 𝑞), the 
statistical distance between (𝐴, 𝐴×𝑟) and uniform is negligible
• By a hybrid argument over the columns of 𝑅, it follows that the 

statistical distance between (𝐴, 𝐴×𝑅) and uniform is also negligible
• Thus, the ciphertext statistically hides the plaintext 
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The GSW Scheme – Parameters
• Correctness requires 𝑛 + 𝑚 + 𝑁 + 1 KG! < 𝑞/4
• Security requires 𝑚 = Θ(𝑛 log 𝑞), e.g. 𝑚 ≥ 1 + 2𝑛(2 + log 𝑞) 

• Hardness of LWE requires 𝑞 ≤ 2"*  for 𝜖 < 1
• Substituting we get 𝑞 > (2𝑛 log 𝑞)\/J
• And thus 𝑛] > (𝜏 + 3)(log 𝑛 + log log 𝑞 + 1) which for large 𝜏, 𝑛 

yields 𝑛] > 2𝜏 log 𝑛
• So we set 𝑛 = max(𝜆, 4𝜏/𝜖 log 𝜏!/] ), 𝑞 = 2"! , 𝑚 = 𝑂(𝑛!/]), and 
𝛼 = ⁄𝑛 𝑞 = 𝑛 > 23"!

• Hence, the size of ciphertexts is polynomial in 𝜆, 𝜏 thus yielding 
a weakly-compact FHE
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Increasing the Homomorphic Capacity
• The only way to increase the homomorphic capacity of GSW is 

to pick larger parameters
• This dependence can be broken using a trick by Gentry
•Main idea: Do a few operations, then switch keys
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Switch keys



How to Switch Keys
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Circular Security
• The above scheme is compact, but not fully homomorphic, as 

we need a pair of keys for each level in the circuit
• A natural idea is to use a single pair (𝑝𝑘, 𝑠𝑘) and include in 𝑝𝑘0 

a ciphertext 𝑐∗ ←$ 𝐄𝐧𝐜(𝑝𝑘, 𝑠𝑘)
• Correctness still holds for this variant, but the reduction to semantic 

security breaks
•Workaround: Assume circular security
• I.e., 𝐄𝐧𝐜(𝑝𝑘, 0) ≈^ 𝐄𝐧𝐜(𝑝𝑘, 1) even given 𝑐∗ ←$ 𝐄𝐧𝐜(𝑝𝑘, 𝑠𝑘)
• GSW is conjectured to have this property, but no proof of this fact is 

currently known
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Identity-Based Encryption

• Postulated by Shamir in 1984 [Sha84]
• Avoids the need of certificates
• Introduces the so-called key escrow problem

• First realization by Boneh and Franklin in 2001 [BF01]
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Selective Security of IBE 

• Every selectively secure IBE is also fully secure with an 
exponential loss in the parameters
• Also, general transformations are known
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Warm-up Construction [CHKP10]
• Public parameters: 𝑚𝑝𝑘 = (𝑨𝟎, 𝑨!N, 𝑨!!, 𝑨#N, 𝑨#!,𝒖)
• Assume, for simplicity, 𝐼𝐷 = 2

•Master secret key: Trapdoor for 𝑨N  
• Secret key for identity 𝐼𝐷 = 01: Short vector 𝒔 s.t. 𝑭=! > 𝒔 = 𝒖	mod	𝑞, 

where 𝑭=! = [𝑨=|𝑨!=|𝑨&!]
• Note: A trapdoor for 𝑨= implies a trapdoor for 𝑭=!

• Encryption: Dual Regev encryption of 𝑥 w.r.t. matrix 𝑭N!
• The ciphertext is 𝒄=- = 𝒓- > 𝑭=! + 𝒆- and 𝑐! = 𝒓- > 𝒖 + 𝑒4 + 𝑥 > 𝑞/2
• Bob outputs 𝑐! − 𝒄=- > 𝒔 ≈ 𝑥 > 𝑞/2
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Simulation
• Assume the challenge identity is 𝐼𝐷∗ = 11
• The reduction can’t know the secret key for 𝐼𝐷∗

• Choose 𝑨N, 𝑨!!, 𝑨#!  uniformly at random, but sample 𝑨!N, 𝑨#N with 
the corresponding trapdoors
• The reduction can derive trapdoors for 𝑭NN = [𝑨N|𝑨!N|𝑨#N], 
𝑭N! = [𝑨N|𝑨!N|𝑨#!], and 𝑭!N = [𝑨N|𝑨!!|𝑨#N] but not for 
𝑭!! = [𝑨N|𝑨!!|𝑨#!] 
• This allows the reduction to simulate key extraction queries while 

embedding the LWE challenge in the simulation
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A More Efficient Construction [ABB10]
• Public parameters: 𝑚𝑝𝑘 = (𝑨𝟎, 𝑨!,𝑮,𝒖)
•Master secret key: Trapdoor for 𝑨N  
• Secret key for identity 𝐼𝐷: Short vector 𝒔 s.t. 𝑭de > 𝒔 = 𝒖	mod	𝑞, 

where 𝑭de = [𝑨=|𝑨! + 𝐼𝐷 > 𝑮]
• As before, a trapdoor for 𝑨= implies a trapdoor for 𝑭de

• Encryption: Dual Regev encryption of 𝑥 w.r.t. matrix 𝑭OP
• The ciphertext is 𝒄=- = 𝒓- > 𝑭de + 𝒆- and 𝑐! = 𝒓- > 𝒖 + 𝑒4 + 𝑥 > 𝑞/2
• Bob outputs 𝑐! − 𝒄=- > 𝒔 = 𝒓- > 𝒖 + 𝑒4 + 𝑥 > 𝑞/2 − 𝒓- > 𝑭de > 𝒔 + 𝒆- >
𝒔 = 𝒓-> 𝒖 + 𝑒4 + 𝑥 > 𝑞/2 − 𝒓- > 𝒖 + 𝒆- > 𝒔 ≈ 𝑥 > 𝑞/2
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Simulation Revisited
• Assume the challenge identity is 𝐼𝐷∗
• The reduction can’t know the secret key for 𝐼𝐷∗

• The reduction does not know a trapdoor for 𝑨N, but it knows a 
trapdoor for the gadget matrix 𝑮
• Let 𝑨! = [𝑨N + 𝑹 − 𝐼𝐷∗ + 𝑮], where 𝑹 is random and low-norm
• This is indistinguishable from the real 𝑨!

• Note that 𝑭OP = [𝑨N|𝑨N + 𝑹 + (𝐼𝐷 − 𝐼𝐷∗) + 𝑮]
• Using the technique of [MP12], we can derive a trapdoor for 𝑭de  

given a trapdoor for 𝑨=
• This allows to simulate key extraction queries for all 𝐼𝐷 ≠ 𝐼𝐷∗
• The LWE challenge can be embedded as before
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Inner-product Encryption [KSW08]

• Decryption reveals 𝑥 if and only if 𝒂, 𝒃 = 0
• Here, we can also be interested in attributes privacy

• Can be used to obtain predicate encryption for polynomial 
evaluation, CNFs/DNFs of bounded degree, and fuzzy IBE
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Generalizing to Inner Products [AFV11]
• Public parameters: 𝑚𝑝𝑘 = (𝑨, 𝑨!, … , 𝑨$ , 𝑮, 𝒖)
•Master secret key: Trapdoor for 𝑨
• Secret key for 𝑏: Short vector 𝒔𝒃 s.t. 𝑭𝒃 > 𝒔𝒃 = 𝒖mod 𝑞, where 𝑭𝒃 =
[𝑨|∑# 𝑏# > 𝑨#]

• Encryption: Dual Regev encryption of 𝑥 w.r.t. matrix 𝑨
• The ciphertext is 𝒄=- = 𝒓- > 𝑨 + 𝒆-, 𝑐′ = 𝒓- > 𝒖 + 𝑒4 + 𝑥 > 𝑞/2, and 𝒄#- =
𝒓- > (𝑨#+𝑎# > 𝑮) + 𝒆#- (so it indeed hides 𝒂)
• Bob sets 𝒄𝒃 = ∑# 𝑏# > 𝒄# = 𝒓- > (∑# 𝑏# > 𝑨# + ∑# 𝑎# > 𝑏# > 𝑮) + ∑# 𝑏# > 𝑒#

which equals 𝒓- > ∑# 𝑏# > 𝑨# + ∑# 𝑏# > 𝑒#
• Hence, 𝒄= 𝒄𝒃 ≈ 𝒓- > [𝑨| ∑# 𝑏# > 𝑨#] is a dual Regev ciphertext
• Bob outputs 𝑐′ − 𝒄=- > 𝒔𝒃 − 𝒄𝒃

- > 𝒔𝒃 ≈ 𝑥 > 𝑞/2
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Attribute-based Encryption [SW04]

• Decryption reveals 𝑥 if and only if 𝑓(𝒂) = 0
• Here, we are not interested in attributes privacy

• Plenty of applications for privacy-preserving data mining and in 
cryptography for big data
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Handling Multiplications [BGG+14]
• Let 𝒄!. = 𝒓. + (𝑨!+𝑎! + 𝑮) + 𝒆!.  and 𝒄#. = 𝒓. + (𝑨#+𝑎# + 𝑮) + 𝒆#.

•Want: 𝒄!#. = 𝒓. + (𝑨!#+𝑎! + 𝑎# + 𝑮) + 𝒆!#.
• Compute (𝑨!+𝑎! > 𝑮) > 𝑮3!(−𝑨&) = 𝑨! > 𝑮3!(−𝑨&) − 𝑎! > 𝑨&
• Compute (𝑨&+𝑎& > 𝑮) > 𝑎! = 𝑎! > 𝑨& + 𝑎! > 𝑎& > 𝑮
• The difference is 𝑨!& + 𝑎! > 𝑎& > 𝑮

• So, we let 𝒄!#. = 𝒄!. + 𝑮8!(−𝑨#) + 𝒄#. + 𝑎!
• 𝑮3!(−𝑨&) and 𝑎! are small and do not effect noise
• As usual, additionally let 𝒄=- = 𝒓- > 𝑨 + 𝒆-, 𝑐′ = 𝒓- > 𝒖 + 𝑒4 + 𝑥 > 𝑞/2
• If 𝑎! > 𝑎& = 0, then [𝒄=|𝒄!&] ≈ 𝒓- > [𝑨|𝑨!&]
• The secret key is a short vector 𝒔!& s.t. [𝑨|𝑨!&] > 𝒔!& = 𝒖mod 𝑞
• Bob outputs 𝑐′ − 𝒄=- > 𝒔!& − 𝒄!&- > 𝒔!& ≈ 𝑥 > 𝑞/2
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