Post-quantum Cryptography

Data Privacy and Security

<u>Prof. Daniele Venturi</u> Dipartimento di Informatica

Academic Year 2024-2025

Modern Cryptography

- Cryptography is everywhere
 - Credit cards, electronic passports, electronic commerce, electronic voting, cryptocurrencies, ...
- **Provable** security: **Reductions** to solving **hard problems**, given an attacker breaking security of cryptographic primitives
 - Requires to **believe** $P \neq NP$ (and in fact, that OWFs exist)
 - Examples: factoring, discrete logarithm, bilinear maps...
- History of success
 - Secret-key cryptography, public-key cryptography, identity-based cryptography, attribute-based cryptography, program obfuscation, ...

The Quantum Threat

- An algorithm by Shor [Sho94] solves the factoring and discrete logarithm problems in **polynomial-time** on a **quantum** machine
 - The algorithm requires an ideal quantum Turing machine
 - Factoring a 1024-bit integer requires 2050 logical qubits and a quantum circuit with billions of quantum gates
 - Despite recent progress on quantum computation, current implementations can only factor **tiny numbers** (e.g., 15 and 21)
- Nevertheless, the NIST started in 2017 a process to solicit, evaluate, and standardize **quantum-resistant** cryptography
 - The selected algorithms were announced in 2022
 - Most of these algorithms are based on lattices

What's the Rush?

- Big quantum computers won't be available for many years
 - If ever...
 - Can't we just wait?
- Better safe than sorry
 - Harvesting attacks: Store today's keys/ciphertexts to break later
 - **<u>Rewrite history</u>**: Forge signatures for old keys
 - Deploying new cryptography at scale requires 10+ years

Lattices

What is a Lattice?

- Simply, a set of points in a high-dimensional space
 - Arranged periodically
- Formally, take *n* linearly independent vectors $(\vec{b}_1, ..., \vec{b}_n)$ in \mathbb{R}^n and consider all integer combinations

$$\{a_1\vec{b}_1 + \dots + a_n\vec{b}_n : a_1, \dots, a_n \in \mathbb{Z}\}$$

• We call
$$(\vec{b}_1, \dots, \vec{b}_n)$$
 a basis

• The same lattice may have

different equivalent basis

• Even if base vectors are long, there are short vectors in the lattice

History

- Geometric objects with rich mathematical structure
- Considerable mathematical interest starting from Gauss (1801), Hermite (1850), and Minkowski (1896)

 Recently, many interesting applications (cryptanalysis, factoring rational polynomials, finding integer relations, ...)

Equivalent Bases

- Sometimes, we write $\mathcal{L}(B)$ where B is the matrix whose columns are $(\vec{b}_1, \dots, \vec{b}_n)$
 - One can also define a lattice as a **discrete additive subgroup** of \mathbb{R}^n

• Equivalent bases:

- Permute vectors (i.e., $\vec{b}_i \leftrightarrow \vec{b}_j$)
- Negate vectors (i.e., $\vec{b}_i \leftarrow (-\vec{b}_i)$)
- Add integer multiple of another vector (i.e., $\vec{b}_i \leftarrow \vec{b}_i + k \cdot \vec{b}_j, k \in \mathbb{Z}$)
- <u>Theorem</u>: Two bases B_1 , B_2 are **equivalent** iff $B_2 = B_1 \cdot U$
 - U unimodular (i.e., integer matrix with $det(U) = \pm 1$)

The Fundamental Region

- The fundamental region of a lattice corresponds to a periodic tiling of \mathbb{R}^n by copies of some body
 - For instance, [0,1) is a fundamental region of the integer lattice \mathbb{Z} , as every $x \in \mathbb{R}$ is in the unique translate [x] + [0,1)

• A lattice base yields a fundamental region called the **fundamental parallelepiped** $(\sum_{n \to \infty} n)$

$$\mathcal{P}(B) = B \cdot [0,1)^n = \left\{ \sum_{i=1}^n c_i \cdot \vec{b}_i : c_i \in [0,1) \right\}$$

- Useful for measuring arbitrary points relative to a lattice
 - Note $x \mod \mathcal{P}(B) = (a_1 \mod 1)\vec{b}_1 + \dots + (a_n \mod 1)\vec{b}_n$
 - A point x is in a lattice iff $x \mod \mathcal{P}(B) = (0, ..., 0)$

Determinant

- The **determinant** of a lattice $\mathcal{L}(B)$ is $det(\mathcal{L}) = |det(B)|$
- Note that this is well defined, as for every unilateral ${\cal U}$

 $|\det(B \cdot U)| = |\det(B) \cdot \det(U)| = \det(B)$

- The determinant corresponds to the volume of the fundamental parallelepiped
 - The determinant is the **reciprocal** of the **density** (i.e., big determinant means sparse lattice)
 - Moreover, the volume is the **same** for **every** fundamental region

Successive Minima

- Let $\lambda_1(\mathcal{L})$ be the length of the shortest non-zero vector in a lattice \mathcal{L}
 - Usually, in terms of the Euclidean norm
 - The shortest vector is **never unique**, as for every $\vec{v} \in \mathcal{L}$ also $-\vec{v} \in \mathcal{L}$
- More generally, $\lambda_k(\mathcal{L})$ denotes the radius of the ball containing k linearly independent vectors
 - For k = n the ball contains a basis of the entire space

Minkowski's Theorem

- Lemma (Blichfeld): For any lattice \mathcal{L} and set \mathcal{S} with $vol(\mathcal{S}) > det(\mathcal{L})$, there exist distinct $\vec{z_1}, \vec{z_2} \in \mathcal{S}$ we have that $\vec{z_1} \vec{z_2} \in \mathcal{L}$
 - The proof is simple and only requires volume arguments (exercise)
- Theorem (Minkowski): For any lattice L and convex, zerosymmetric, set S with vol(S) > 2ⁿdet(L), there exists a nonzero lattice point in S

- Let $\vec{z}_1, \vec{z}_2 \in S/2$; by Blichfeld $\vec{z}_1 \vec{z}_2 \in \mathcal{L}$
- Now, $2\vec{z}_1$, $-2\vec{z}_2 \in S$
- So, their average $\vec{z}_1 \vec{z}_2 \in \mathcal{S}$
- Corollary (Minkowski): For every \mathcal{L} , we have that $\lambda_1(\mathcal{L}) \leq \sqrt{n} \cdot \det(\mathcal{L})^{1/n}$

Hard Problems

- **SVP**_{γ}: Given *B*, find a vector in $\mathcal{L}(B)$ with length $\leq \gamma \cdot \lambda_1(\mathcal{L}(B))$
- **GapSVP**_{γ}: Given *B*, **decide** if $\lambda_1(\mathcal{L}(B))$ is ≤ 1 or $\geq \gamma$
- **SIVP**_{γ}: Given *B*, find *n* **linearly independent** vectors in $\mathcal{L}(B)$ with length $\leq \gamma \cdot \lambda_n(\mathcal{L}(B))$
- \mathbf{CVP}_{γ} : Given *B* and \vec{v} , find a lattice point that is at most γ times farther than the closest lattice point
 - It is known that $\mathbf{SVP}_{\gamma} \leq \mathbf{CVP}_{\gamma}$
- **BDD**: Find **closest** lattice point, given that \vec{v} is **already close**

General Hardness Results

- Exact algorithms take time 2^n
- Polynomial-time algorithm for gap $\gamma = 2^{n \log \log n / \log n}$
- No better **quantum** algorithm known
- *NP* hardness for gap $\gamma = n^{c/\log \log n}$
 - For cryptographic applications, we need $\gamma = \Omega(n)$
 - Not believed to be NP-hard for $\gamma = \sqrt{n}$

Small Integer Solution Problem

- Fix dimension n, and modulus q (e.g., $q \approx n^2$)
- Given random vectors $a_1, ..., a_m \in \mathbb{Z}_q^n$, find non-zero small $z_1, ..., z_m \in \mathbb{Z}$ such that

$$z_1 \cdot a_1 + z_2 \cdot a_2 + \dots + z_m \cdot a_m = \mathbf{0} \quad \text{in } \mathbb{Z}_q^n$$

- Observations:
 - Trivial if the size of the z_i 's is **not restricted** (Gaussian elimination)
 - Equivalently, find non-zero short $z \in \mathbb{Z}^m$ s.t. $A \cdot z = \mathbf{0} \in \mathbb{Z}_q^n$

SIS as a Lattice Problem

Find short ($||\mathbf{z}|| \le \beta \ll q$) solutions for random *A*

• Theorem (Ajt96). For any *n*-dimensional lattice, it holds that:

 $\operatorname{GapSVP}_{\beta\sqrt{n}},\operatorname{SIVP}_{\beta\sqrt{n}}\leq\operatorname{SIS}_{\beta}$

• Also true for any lattice coset $\mathcal{L}_{u}^{\perp}(A) = \{z \in \mathbb{Z}^{m} : A \cdot z = u\} = u + \mathcal{L}^{\perp}(A)$ (i.e., inhomogenuous SIS)

(q, 0)

(0,q)

(0|0)

Learning with Errors [Reg05]

- Dimension *n*, modulus q > 2, **noise** distribution χ
- Find $s \in \mathbb{Z}_q^n$ given m noisy random inner product equations

- Trivial **without** noise
- Gaussian distribution over \mathbb{Z} , with std deviation $\geq \sqrt{n}$ and $\ll q$
 - Rate parameter $lpha \ll 1$
- Need $\alpha q > \sqrt{n}$ for worst-case hardness and because there is an $\exp((\alpha q)^2)$ -time attack

Decisional LWE

- **Distinguish** the matrix **A** and the vector **b** from random (**A**, **b**)
 - Decisional LWE is equivalent to Search LWE

LWE as a Lattice Problem

• Matrix
$$\mathbf{A} = (\mathbf{a}_1, \dots, \mathbf{a}_m) \in \mathbb{Z}_q^{n \times m}$$

 $\mathcal{L}(\mathbf{A}) = \{\mathbf{z} \in \mathbb{Z}^m : \mathbf{z}^t = \mathbf{s}^t \cdot \mathbf{A}\}$

LWE is BDD on $\mathcal{L}(\mathbf{A})$: Given $\mathbf{b}^{t} \approx \mathbf{z}^{t} = \mathbf{s}^{t} \cdot \mathbf{A}$ find \mathbf{z}

• Theorem (Reg05,Pei10). For any *n*-dimensional lattice, it holds that:

GapSVP_{αn}, **SIVP**_{αn} \leq **LWE**

(0,q)

- Quantum reduction for broad parameters [Reg05]
- Classical reduction for restricted parameters (e.g., $q \approx 2^n$) [Pei10]

Hardness of LWE

• More formally define the LWE distribution as

$$\mathbf{LWE}[n, m, q, \chi] = \left\{ (\mathbf{A}, \mathbf{b}): \begin{array}{l} \mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}; \mathbf{s} \leftarrow \mathbb{Z}_q^n; \\ \mathbf{e} \leftarrow \chi^m; \mathbf{b}^{\mathsf{t}} = [\mathbf{s}^{\mathsf{t}} \cdot \mathbf{A} + \mathbf{e}^{\mathsf{t}}]_q \right\}$$

- Parameters:
 - $\alpha = 1/\text{poly}(n)$ or $\alpha = 2^{-n^{\epsilon}}$ (stronger assumption as α decreases)
 - $m = \Theta(n \log q)$ or m = poly(n) (stronger assumption as m increases)
 - $q = 2^{n^{\epsilon}}$ or q = poly(n) (stronger assumption as q increases)
 - Noise distribution χ such that $\mathbb{P}[|e| > \alpha q : e \leftarrow \chi] \le \operatorname{negl}(n)$

Simple Properties

- Check a **candidate** solution $\mathbf{t} \in \mathbb{Z}_q^n$
 - Test if all $b \langle t, a \rangle$ are small
 - If $t \neq s$, then $b \langle t, a \rangle = \langle s t, a \rangle + e$ is well-spread in \mathbb{Z}_q
- Shift the secret by any $r \in \mathbb{Z}_q^n$
 - Given $(a, b = \langle s, a \rangle + e)$, output $(a, b' = b + \langle r, a \rangle = \langle s + r, a \rangle + e)$
 - Using random r yields a random self-reduction
 - Amplification of success probabilities (i.e., non-negligible success probability for random $s \in \mathbb{Z}_q^n$ implies overwhelming success probability for every $s \in \mathbb{Z}_q^n$)
- Multiple secrets: $(a, b_1 = \langle s_1, a \rangle + e_1, ..., \langle s_t, a \rangle + e_t)$ indistinguishable from random $(a, b_1, ..., b_t)$

Search/Decision Equivalence

- Suppose we are given an oracle that **perfectly distinguishes** pairs $(a, b = \langle s, a \rangle + e)$ from random (a, b)
- To find s_1 , it suffices to **test** if $s_1 = 0$
 - Because we can shift s_1 by 0,1, ..., q 1 (assuming q = poly(n))
 - Then we can do the same for s_2, \ldots, s_n
- The test: For each (a, b), choose random $r \in \mathbb{Z}_q$ and invoke the oracle on pairs (a' = a (r, 0, ..., 0), b)
- Note that $b = \langle s, a' \rangle + s_1 \cdot r + e$
 - If $s_1 = 0$, then $b = \langle s, a' \rangle + e$ and the oracle **accepts**
 - If $s_1 \neq 0$, then b is **uniform** (assuming q **prime**) and the oracle **rejects**

LWE with Short Secrets

- Theorem [M01,ACPS09]: LWE is no easier if the secret is drawn from the error distribution χ
 - Intuition: Finding *e* equivalent to finding *s* (i.e., $b^{t} e^{t} = s^{t} \cdot A$)
- **Transformation** from secret $s \in \mathbb{Z}_q^n$ to secret $\overline{e} \leftarrow \chi^n$
 - Draw samples to get $(\overline{A}, \overline{b}^{t} = s^{t} \cdot \overline{A} + \overline{e}^{t})$ for square, invertible, \overline{A}
 - Transform each additional sample $(a, b = \langle s, a \rangle + e)$ to

$$a' = -\overline{A}^{-1} \cdot a, b' = b + \langle \overline{b}, a' \rangle = \langle \overline{e}, a' \rangle + e$$

 This maps uniform (a, b) to uniform (a', b'), and thus works for decision LWE too

LWE vs SIS

- SIS has many valid solutions, whereas LWE only has one
- LWE \leq SIS
 - Given **z** such that $\mathbf{A} \cdot \mathbf{z} = \mathbf{0}$ from an SIS oracle, compute $\mathbf{b}^{t} \cdot \mathbf{z}$
 - Now, $b^t \cdot z = e^t \cdot z$ is **small** in the LWE case, whereas $b^t \cdot z$ is **well-spread** in case b^t is uniformly random
- What about the other direction?
 - Not known in general
 - True under quantum reductions

Efficiency of LWE/SIS

• Getting **one** random-looking scalar $b_i \in \mathbb{Z}_q$ requires an n-dimensional **inner product** mod q

- Can **amortize** each column a_i over **many secrets** s_j , but the latter still requires $\tilde{O}(n)$ work per scalar output
- Public keys are rather large, i.e.
 > n² time to encrypt/decrypt an n-bit message
- Can we do better?

Wishful Thinking...

$$s^{t} \star a^{t} + e^{t} = b^{t}$$

 $\in \mathbb{Z}_{q}^{d}$

- Get *d* pseudorandom scalars from just one cheap product operation *
- Replace $\mathbb{Z}_q^{d \times d}$ chunks with \mathbb{Z}_q^d
- Main question: How to define the product * so that (a, b) is pseudorandom
 - Requires care: **coordinate-wise** product **insecure** for **small** errors
- <u>Answer</u>: Let \star be multiplication in a polynomial ring, e.g. $\mathbb{Z}_q^d[X]/(X^d + 1)$
 - Fast and practical with the FFT: $d \log d$ operations mod q
 - The same **ring structure** used in NTRU [HPS08]

LWE over Rings/Modules

• Let $R = \mathbb{Z}[X]/(X^d + 1)$ for d a power of 2 and $R_q = R/qR$

- Elements of R_q are degree < d polynomials with coefficients mod q
- Operations over R_a are very efficient using FFT-like algorithms
- Search LWE: Find secret vector of polynomials s in R_a^k given

- Each equation is d related equations on a secret of dimension $n = d \cdot k$

Hardness of Ring/Module-LWE

• Theorem [LPR10]: For any $R = O_K$

R^k -GapSVP \leq search R^k -LWE decision $\leq R^k$ -LWE

- Can we **dequantize** the worst-case/average-case reduction?
 - The **classical** GapSVP <= LWE reduction is of little use: for the relevant factors, GapSVP for **ideals** (i.e., k = 1) is **easy**
- How hard (or not) is GapSVP on ideal/module lattices?
 - For **polynomial approximation** no significant improvement versus general lattices (even for ideals)
 - For subexponential approximation we have better quantum algorithms for ideals, but not for k > 1
- Reverse reductions? Seems not without increasing k...

Why Lattice-based Cryptography?

• Provable security

- If scheme is not secure, one can solve hard mathematical problems
- Not always happens in current implementations (e.g., RSA)
- Worst-case security
 - If scheme not secure, one can break every instance of lattice problems
 - Factoring and discrete log only guarantee average-case security
- Still unbroken by quantum algorithms
 - No progress over the last 50 years
 - But we don't know: see https://eprint.iacr.org/2024/555
- Efficiency
 - Mainly additions/multiplications, no modular exponentiations

Basic Cryptographic Applications

One-Way Functions

- Parameters $m, n, q \in \mathbb{Z}$, key $A \in \mathbb{Z}_q^{n \times m}$
- Input $\mathbf{x} \in \{0,1\}^m$, output $f_A(\mathbf{x}) = \mathbf{A} \cdot \mathbf{x}$
- Theorem [Ajt96]: For $m > n \log q$, if SIVP is hard to approximate in the worst-case, then f_A is one-way
- Cryptanalysis: Given A, y, find x such that $y = A \cdot x$
 - **Easy** problem: find **arbitrary** u such that $y = A \cdot u$
 - All solutions $y = A \cdot x$ are of the form $t + \mathcal{L}^{\perp}(A)$
 - Requires to find small vector in $t + \mathcal{L}^{\perp}(A)$ or to find a lattice point $v \in \mathcal{L}^{\perp}(A)$ close to t (average-case instance of CVP w.r.t. $\mathcal{L}^{\perp}(A)$)

Collision-resistant Hash Functions

Collisions exists inherently, but are hard to find efficiently

• Given $\mathbf{A} = (\mathbf{a}_1, \dots, \mathbf{a}_m)$, define $h_A: \{0,1\}^m \to \mathbb{Z}_q^n$

$$h_A(z_1,\ldots,z_m) = a_1 \cdot z_1 + \cdots + a_m \cdot z_m$$

- Set $m > n \log q$ in order to get **compression**
- A collision $a_1 \cdot z_1 + \dots + a_m \cdot z_m = a_1 \cdot z'_1 + \dots + a_m \cdot z'_m$ yields $a_1 \cdot (z_1 z'_1) + \dots + a_m \cdot (z_m z'_m) = 0$, with $z_m z'_m \in \{-1, 0, 1\}$

Commitments

- Analogy: lock message in a box, give the box, keep the key
 - Later give the key to **open** the box
- Implementation:
 - Randomized function Com(x; r), where x is the message and r is the randomness
 - To **open** a commitment simply reveal (x, r)
- Security properties
 - Hiding: Com(x; r) reveals nothing on x
 - **<u>Binding</u>**: Can't open Com(x; r) to $x' \neq x$

Commitments

- Take two random SIS matrices A₁, A₂
- The **message** is $\mathbf{x} \in \{0,1\}^m$ and the **randomness** is $\mathbf{r} \in \{0,1\}^m$
- Commitment: $\operatorname{Com}(x; r) = f_{A_1, A_2}(x, r) = A_1 \cdot x + A_2 \cdot r$
 - <u>Hiding:</u> $A_2 \cdot r = f_{A_2}(r)$ is statistically close to uniform over \mathbb{Z}_q^n , and thus x is information-theoretically hidden
 - <u>Binding</u>: Finding (x, r) and (x', r') such that Com(x; r) = Com(x'; r') directly contradicts the collision resistance of f_{A_1,A_2}

Leftover Hash Lemma

- Let *H* be a family of **universal hash functions** with domain *D* and image *I*. Then, for $x \leftarrow_{\$} D$, $h \leftarrow_{\$} H$, and $u \leftarrow_{\$} I$: $\mathbb{SD}((h,h(x));(h,u)) \leq 1/2 \cdot \sqrt{|I|/|D|}$
- Note that the function $h_A(\vec{r}) = [A \times \vec{r}]_q$ is **universal**
 - As $\forall \vec{r_1} \neq \vec{r_2}$: $\mathbb{P}_A[h_A(\vec{r_1}) = h_A(\vec{r_2})] = \mathbb{P}_A[A \times (\vec{r_1} \vec{r_2}) = \vec{0}] = q^{-n}$
- Hence, for $\vec{r} \leftarrow_{\$} \{0,1\}^m$, $A \leftarrow_{\$} \mathbb{Z}_q^{n \times m}$, and $\vec{u} \leftarrow_{\$} \mathbb{Z}_q^n$, whenever $m = 2 + n \log q + 2n$

$$\mathbb{SD}\left(\left(A, [A \times \vec{r}]_q\right); (A, \vec{u})\right) \le 1/2 \cdot \sqrt{q^n/2^m} \le 2^{-n}$$

NIST Standards

Falcon

Lattice Trapdoors

Recall: Lattice-based one-way functions

 $f_{\boldsymbol{A}}(\boldsymbol{x}) = \boldsymbol{A} \cdot \boldsymbol{x} \mod q \in \mathbb{Z}_q^n$

$$f_{\boldsymbol{A}}(\boldsymbol{s}, \boldsymbol{e}) = \boldsymbol{s}^{\mathsf{t}} \cdot \boldsymbol{A} + \boldsymbol{e}^{\mathsf{t}} \mod q \in \mathbb{Z}_q^m$$

(short *x*, surjective)

(short *e*, injective)

- Task: Invert *f*_A
 - Find the **unique** *s* (or *e*) such that $f_A(s, e) = s^t \cdot A + e^t \mod q$
 - Given $u = f_A(x') = A \cdot x' \mod q$, sample random $x \leftarrow f_A^{-1}(u)$ with probability proportional to $\exp(-||x||^2/s^2)$
- How? Via a strong trapdoor for A (a short basis of $\mathcal{L}^{\perp}(A)$)
 - Deeply studied question [Babai86, Ajtai99, Klein01, GPV08, AP09, P10]

A Different Kind of Trapdoor [MP12]

- Drawbacks of previous solutions
 - Generating **A** with short basis is **complex** and **slow**
 - Inversion algorithms trade-off quality (i.e., length of basis vectors which depends on the Gaussian std parameter s) for efficiency
- Alternative: The trapdoor is not a basis
 - But just as powerful
 - Simpler and faster
- Overview of method
 - Start with **fixed**, **public**, lattice defined by **gadget matrix** G which admits very **fast**, and **parallel**, algorithms for f_G^{-1}
 - Randomize G into A via nice unimodular transform (the trapdoor)
 - **Reduce** f_A^{-1} to f_G^{-1} plus some pre/post-processing

Step 1: The Gadget Matrix

- Let $q = 2^k$ and take $g = \begin{bmatrix} 1 & 2 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}$
- To invert $f_g: \mathbb{Z}_q \times \mathbb{Z}^k \to \mathbb{Z}_q^k$

$$f_g(s, e) = s \cdot g + e = [s + e_0 \quad 2s + e_1 \quad \cdots \quad 2^{k-1}s + e_{k-1}] \mod q$$

- Get lsb of s from $2^{k-1}s + e_{k-1}$, then repeat for the next bits of s
- Works when $e_{k-1} \in [-q/4, q/4)$
- To sample Gaussian preimage for $u = f_g(x) = \langle g, x \rangle$
 - For $i \in [0, k 1]$, choose $x_i \leftarrow (2\mathbb{Z} + u)$ and let $u \leftarrow (u x_i)/2 \in \mathbb{Z}$
 - E.g., $k = 2: x_0 \leftarrow (2z_0 + u), u \leftarrow (u 2z_0 u)/2 = -z_0, x_1 \leftarrow (2z_1 z_0), \langle g, x \rangle = 2z_0 + u + 2(2z_1 z_0) = u + 4z_1 = u \mod 4$

Step 1: The Gadget Matrix G

• Alternative view: The lattice $\mathcal{L}^{\perp}(g)$ has basis

$$\boldsymbol{S} = \begin{bmatrix} 2 & & & \\ -1 & 2 & & \\ & -1 & \ddots & \\ & & \ddots & 2 & \\ & & & -1 & 2 \end{bmatrix} \in \mathbb{Z}^{k \times k}, \text{ with } \tilde{\boldsymbol{S}} = 2 \cdot \boldsymbol{I}_{k}$$

- The above inversion algorithms are special cases of the randomized nearest-plan algorithm [Bab86,Kle01,GPV08]
- Define $G = I_n \otimes g \in \mathbb{Z}^{n \times nk}$ (where \otimes is the **tensor** product)
 - Computing f_{G}^{-1} reduces to n parallel calls to f_{g}^{-1}
 - Also applies to $H \cdot G$, for any **invertible** $H \in \mathbb{Z}_q^{n \times n}$

Step 2: Randomize G

- Define semi-random $[\overline{A}|G]$ for uniform $\overline{A} \in \mathbb{Z}_q^{n \times \overline{m}}$
 - It can be seen that inverting $f_{[\overline{A}|G]}^{-1}$ reduces to inverting f_{G}^{-1} [CHKP10]
- Choose a short Gaussian $\mathbf{R} \in \mathbb{Z}^{\overline{m} \times n \log q}$ and let

$$A = \begin{bmatrix} \overline{A} & \\ G \end{bmatrix} \cdot \begin{bmatrix} I & R \\ I \end{bmatrix} = \begin{bmatrix} \overline{A} & \\ G & - \overline{A} \end{bmatrix} = \begin{bmatrix} \overline{A} & \\ G & - \overline{A} \end{bmatrix}$$

- A is uniform because, by the leftover hash lemma, $[\overline{A}|\overline{AR}]$ is statistically close to uniform when $\overline{m} \approx n \log q$
- Alternatively, $[I|\overline{A}| \overline{A} \cdot R_1 + R_2]$ is **pseudorandom** under the LWE assumption (in normal form)

A New Trapdoor Notion

- We constructed $A = [\overline{A}|G \overline{A}R]$
- Say that **R** is a **trapdoor** for **A** with **tag** $H \in \mathbb{Z}_q^{n \times n}$ (invertible) if

$$\boldsymbol{A} \cdot \begin{bmatrix} \boldsymbol{R} \\ \boldsymbol{I} \end{bmatrix} = \boldsymbol{H} \cdot \boldsymbol{G}$$

- The quality of **R** is $s_1(\mathbf{R}) = \max_{\mathbf{u}: \|\mathbf{u}\|=1} \|\mathbf{R} \cdot \mathbf{u}\|$
- Fact: $s_1(\mathbf{R}) \approx (\sqrt{\text{rows}} + \sqrt{\text{cols}}) \cdot r$ for Gaussian entries w/ std dev r
- Also **R** is a trapdoor for $A [0|H' \cdot G]$ with tag H H' [ABB10]
- Relating new and old trapdoors
 - Given basis S for $\mathcal{L}^{\perp}(G)$ and trapdoor R for A, one can efficiently construct basis S_A for $\mathcal{L}^{\perp}(G)$ where $\|\tilde{S}_A\| \leq (s_1(R) + 1) \cdot \|\tilde{S}\|$

Step 3: Reduce f_A^{-1} to f_G^{-1}

- Let **R** be a trapdoor for **A** with tag $H = I: A \cdot \begin{vmatrix} R \\ I \end{vmatrix} = G$
- Inverting LWE
 - Given $\mathbf{b}^{t} = \mathbf{s}^{t} \cdot \mathbf{A} + \mathbf{e}^{t}$, recover \mathbf{s} from $\mathbf{b}^{t} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{s}^{t} \cdot \mathbf{G} + \mathbf{e}^{t} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}$
 - Works if **each entry** of $e^{t} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \in [-q/4, q/4)$
- Inverting SIS
 - Given \boldsymbol{u} , sample $\boldsymbol{z} \leftarrow f_{\boldsymbol{G}}^{-1}(\boldsymbol{u})$ and output $\boldsymbol{x} = \begin{vmatrix} \boldsymbol{R} \\ \boldsymbol{u} \end{vmatrix} \cdot \boldsymbol{z} \in f_{\boldsymbol{A}}^{-1}(\boldsymbol{u})$
 - Indeed, $\mathbf{A} \cdot \mathbf{x} = \mathbf{G} \cdot \mathbf{z} = \mathbf{u}$

Leaks about R!

$$\boldsymbol{\Sigma} = \mathbb{E}_{\boldsymbol{x}}[\boldsymbol{x} \cdot \boldsymbol{x}^{\mathrm{t}}] = \mathbb{E}_{\boldsymbol{z}}[\boldsymbol{R} \cdot \boldsymbol{z} \cdot \boldsymbol{z}^{\mathrm{t}} \cdot \boldsymbol{R}^{\mathrm{t}}] \approx \boldsymbol{R} \cdot \boldsymbol{R}^{\mathrm{t}}$$

Step 3: Perturbation Method [P10]

- Generate **perturbation** vector **p** with covariance $s^2 \cdot I R \cdot R^t$
- Sample spherical z such that $G \cdot z = u A \cdot p$
- Output $x = p + \begin{bmatrix} R \\ I \end{bmatrix} \cdot z$

$$A \cdot x = A \cdot p + A \cdot \begin{bmatrix} R \\ I \end{bmatrix} \cdot z = A \cdot p + G \cdot z = u$$

Falcon: Digital Signatures from SIS

- Generate **uniform** vk = A with **trapdoor** sk = T
- To sign μ , use T to sample $\sigma = x \in \mathbb{Z}^m$ such that $A \cdot x = H(\mu)$, where H is a public hash function
 - Recall that x is drawn from a Gaussian distribution, which reveals nothing about the trapdoor T
- To verify $(\mu, \sigma = \mathbf{x})$ under $vk = \mathbf{A}$ simply check $\mathbf{A} \cdot \mathbf{x} = H(\mu)$ and that \mathbf{x} is sufficiently short
- Security: Forging a signature for a new message μ^* requires finding a short x^* such that $A \cdot x^* = H(\mu^*)$
 - This is **equivalent** to solving the SIS problem
 - Signatures queries do not help because they reveal nothing about the trapdoor T

Crystals-Dilithium

Canonical Identification Schemes

- <u>Completeness</u>: The honest prover convinces the honest verifier (with all but a negligible probability)
- Passive Security: No (efficient) malicious prover knowing only pk can convince the honest verifier
 - Even in case the attacker knows many accepting transcripts corresponding to honest protocol executions

- Given a canonical ID scheme, we can derive a signature scheme as follows:
 - Alice obtains $\sigma = (\alpha, \gamma)$ from the **prover**, using the **secret key** sk and choosing $\beta = H(x, \alpha)$
 - Bob checks that (α, β, γ) is a **valid transcript**, with $\beta = H(x, \alpha)$

The Fiat-Shamir Transform

Theorem [FS86]. If the ID scheme is passively secure, the signature derived via the Fiat-Shamir transform is UF-CMA

- **<u>Remark</u>**: The original proof requires to model *H* as an **ideal** hash function (**random oracle**)
 - It is **debatable** in the community what such a proof means in **practice**
- Can we prove security in the **plain model** (i.e., no random oracles)?
 - Many **impossibility** results for **general** ID schemes [???]
 - Possible for some classes of ID schemes assuming so-called correlation intractability [???]

Sufficient Criteria for Passive Security

- One can show the following criteria are sufficient for achieving passive security:
 - Special soundness: Given any pk and two accepting transcripts (α, β, γ) and $(\alpha, \beta', \gamma')$ for pk with $\beta \neq \beta'$, there is a polynomial-time algorithm outputting sk
 - HVZK: Honest proofs reveal nothing about the secret key sk

Proofs of Knowledge

- The special soundness property implies that any successful prover must essentially know the secret key
- In fact, any such prover can be used to **extract** the secret key:
 - Run the prover upon input pk in order to obtain a transcript (α, β, γ)
 - **Rewind** the prover after it already sent α and forward it **another** random challenge β' , which yields a transcript $(\alpha, \beta', \gamma')$
 - As long as $\beta \neq \beta'$, special soundness allows us to obtain sk
- The above can be formalized, but the proof requires some care
 - Because the transcripts (α, β, γ) and $(\alpha, \beta', \gamma')$ are **correlated**

Honest-Verifier Zero-Knowledge

- How do we formalize that a trascript **reveals nothing** on *sk*?
 - This is tricky: transcripts shall not reveal even **one bit** of *sk*
- Require that honest transcripts can be efficiently simulated given just pk (but not sk)
 - Whatever the verifier could compute via the protocol, he could have computed by **talking to himself** (i.e., by running the simulator)
- A canonical ID scheme is **perfect honest-verifier zeroknowledge** (HVZK) if \exists PPT S such that:

$$(pk, sk, \mathcal{S}(pk)) \equiv (pk, sk, \langle \mathcal{P}(pk, sk), \mathcal{V}(pk) \rangle)$$

Canonical ID Scheme from Discrete Log

- Special HVZK: Upon input pk = x, simulator S outputs (α, β, γ) such that $\alpha = g^{\gamma}/x^{\beta}$ and $\beta, \gamma \leftarrow_{\$} \mathbb{Z}_q$
- Special soundness: Assume we are given two accepting transcripts (α, β, γ) and $(\alpha, \beta', \gamma')$ for pk = x, with $\beta \neq \beta'$
 - This implies $g^{\gamma \gamma'} = x^{\beta \beta'}$
 - Thus, $w = (\gamma \gamma') \cdot (\beta \beta')^{-1}$ is the **discrete logarithm** of x

Let's Try the Same Idea using Lattices

- <u>HVZK:</u> Upon input pk = (A, t), simulator S outputs (α, β, γ) such that $\alpha = A \cdot \gamma \beta \cdot t$ and $\beta \leftarrow_{\$} \mathbb{Z}_q, \gamma \leftarrow_{\$} \mathbb{Z}_q^m$
- Special soundness: Assume we are given two accepting transcripts(α, β, γ) and(α, β', γ') for pk = (A, t), with $\beta \neq \beta'$
 - This implies $\mathbf{A} \cdot (\mathbf{\gamma} \mathbf{\gamma}') = (\beta \beta') \cdot \mathbf{t}$
 - Thus, $s = (\gamma \gamma') \cdot (\beta \beta')^{-1}$ is the solution for $A \cdot s = t$

Many Problems...

- The challenge space is **small**
 - $q \approx 2^{12}$ for **encryption**
 - $q \approx 2^{30}$ for signatures
 - $q \approx 2^{32}$ for advanced applications
- This means that a **successful prover** can just **guess** β
- The vector **s** we extract is **not guaranteed to be small**
 - Recall that removing the requirement of s being small makes lattice problems trivial
- <u>Solution</u>: Choose small u, β and repeat the protocol in parallel

Modified Protocol (Take 1)

- The verifier checks the above ∀j = 1, ..., k and that the coefficients of each γ_j are small (i.e., in {0,1,2})
- <u>Special soundness</u>: Given $A \cdot \gamma_j = \beta_j \cdot t + \alpha_j$ and $A \cdot \gamma'_j = \beta'_j \cdot t + \alpha_j$ with $\beta_j \neq \beta'_j$, extract $s = (\gamma_j \gamma'_j) \cdot (\beta_j \beta'_j)^{-1}$
 - The elements of $\gamma_j \gamma'_j$ are in $\{-2, -1, 0, 1, 2\}$, and $\beta_j \beta'_j$ is in $\{-1, 1\}$, so **s** also lies in $\{-2, -1, 0, 1, 2\}$

Insecurity of the Protocol

- There are some **caveats**:
 - We extracted a slightly bigger secret
 - We need to **repeat** for k = 128 or k = 256 times
- Even worse, the protocol does not satisfy HVZK
 - Suppose that the challenge is $\beta = 1$

Possible Fix?

- Maybe we can sample *u* from a larger domain?
 - Suppose that the challenge is $\beta = 1$

- Whenever a γ coefficient is 0 or 6 we know that s is 0 or 1, but the other coefficients are **hidden** (i.e., they could be **equally** 0 or 1)
- So, s only effects the probability that a γ coefficient is 0 or 6

Possible Fix?

- Maybe we can sample *u* from a larger domain?
 - Suppose that the challenge is $\beta = 1$

- In other words, the coefficients 1,2,3,4,5 are **equally likely** to appear **regardless** of the **secret key**
- Natural idea: Send γ only when all the coefficients are in this range

In General...

- Suppose **s** has coefficients in $\{0,1, ..., a\}$ and that **u** has coefficients in $\{0,1, ..., b-1\}$
 - Here, b > a
- Then, for all $a \leq i < b$, we have $\mathbb{P}[s + u = i] = 1/b$
 - Moreover, there are b a such j's and thus 1 a/b probability of keeping the value s secret
- The probability that a γ coefficient is in $\{1, ..., b-1\}$ is 1 1/b
 - The probability that they all are is $(1 1/b)^m$
 - The probability that they all are for all $\gamma_1, ..., \gamma_k$ is $(1 1/b)^{mk}$
 - By setting b = mk, we get $(1 1/b)^{mk} \approx 1/e$

Modified Protocol (Take 2)

- The prover checks whether **any** of the coefficients contained in γ_i is 0 or mk + 1
 - If it is, **abort** and **restart** the protocol
- The verifier checks the above ∀j = 1, ..., k and that the coefficients of each γ_j are small (i.e., in {0, ..., mk})

Modified Protocol (Take 2)

- Special soundness: Given $A \cdot \gamma_j = \beta_j \cdot t + \alpha_j$ and $A \cdot \gamma'_j = \beta'_j \cdot t + \alpha_j$ with $\beta_j \neq \beta'_j$, extract $s = (\gamma_j \gamma'_j) \cdot (\beta_j \beta'_j)^{-1}$ • The elements of $\gamma_j - \gamma'_j$ are in $\{-mk, ..., mk\}$, and $\beta_j - \beta'_j$ is in $\{-1, 1\}$, so s also lies in $\{-mk, ..., mk\}$
- HVZK: Yes, as now γ_i never depends on s
 - **<u>Caveat</u>**: What is α_i in case of **abort**?

Modified Protocol (Take 3)

- The verifier checks the above ∀j = 1, ..., k and that the coefficients of each γ_i are small (i.e., in {0, ..., mk})
- But now it also additionally checks that

$$\alpha = \mathbf{H}(\mathbf{A} \cdot \mathbf{\gamma}_1 - \beta_1 \cdot \mathbf{t}, \dots, \mathbf{A} \cdot \mathbf{\gamma}_k - \beta_k \cdot \mathbf{t})$$

• In case of **abort**, the HVZK simulator can still send a **random** α

In Practice

- The previous protocol still needs to be repeated in parallel k = 128 or 256 times
 - And this is the best one can get for **arbitrary** lattices
- However:
 - The proof size for **one equation** is roughly the same as the proof size for **many equations** (amortization with **logarithmic** growth)
 - Working with **polynomial rings** instead of \mathbb{Z}_q allows for **one-shot approximate** proofs (i.e., the coefficients of *s* are **small**)
 - Using more **complex techniques**, one obtains **almost one-shot exact** proofs (i.e., the coefficients of **s** are in {0,1})

Crystals-Kyber

Regev PKE [Reg05]

- Key Generation: pk = (A, b) and sk = s, where $b^{t} = s^{t} \cdot A + e^{t}$ and $s \in \mathbb{Z}_{q}^{n}, A \in \mathbb{Z}_{q}^{n \times m}$
- Encryption: The encryption of x w.r.t. pk is made of two parts
 - Ciphertext preamble $\boldsymbol{c}_0 = \boldsymbol{A} \cdot \boldsymbol{r}$ for random $\boldsymbol{r} \in \{0,1\}^m$
 - Ciphertext payload $c_1 = b^t \cdot r + x \cdot q/2$
 - Bob outputs $c_1 s^t \cdot c_0 \approx x \cdot q/2$
- <u>Security</u>: By LWE we can switch (*A*, *b*) with (*A*, *b*) for uniformly random *b*^t
 - By the **leftover hash lemma**, we can finally replace c_0 with uniformly random c_0 , so that c_1 hides x information theoretically

Dual Regev [GPV08]

- Key Generation: pk = (A, u) and sk = r, where $u = A \cdot r$ and $r \in \{0,1\}^m, A \in \mathbb{Z}_q^{n \times m}$
- Encryption: The encryption of x w.r.t. pk is made of two parts
 - Ciphertext preamble $c_0 = b^t = s^t \cdot A + e^t$ for random $s \in \mathbb{Z}_q^n$
 - Ciphertext payload $c_1 = s^t \cdot u + e' + x \cdot q/2$
 - Bob outputs $c_1 c_0 \cdot r \approx x \cdot q/2$
- <u>Security</u>: By the leftover hash lemma, we can switch *u* with uniformly random *u*
 - By LWE we can switch (c_0, c_1) with **uniformly random** (c_0, c_1)

Primal versus Dual

- Public key
 - Primal: *pk* is **pseudorandom** with **unique** *sk*
 - Dual: *pk* is **statistically random** with **many possible** *sk*
- Ciphertext
 - Primal: A fresh LWE sample with many possible coins
 - Dual: Multiple LWE samples with **unique** coins
- Security
 - Primal: Encrypting with uniform pk induces random ciphertext
 - Dual: By LWE can switch the ciphertext to random
- Efficiency: The matrix A can be **shared** by different users

Most Efficient [LP11]

- Key Generation: pk = (A, u) and sk = s, where $u^{t} = s^{t} \cdot A + e^{t}$ and $s \in \chi^{n}, A \in \mathbb{Z}_{q}^{n \times n}$
- **Encryption:** The encryption of *x* w.r.t. *pk* is made of two parts
 - Ciphertext preamble $c_0 = A \cdot r + e'$ for $r \in \chi^n$
 - Ciphertext payload $c_1 = u^t \cdot r + e' + x \cdot q/2$
 - Bob outputs $c_1 s^t \cdot c_0 \approx x \cdot q/2$
- <u>Security</u>: By LWE we can switch (*A*, *u*) with (*A*, *u*) for uniformly random *u*
 - This requires LWE with secrets from the **error distribution**
 - Next, we can replace (c_0, c_1) with **uniformly random** (c_0, c_1)

Fujisaki-Okamoto Transform

- The FO transform [FO99,FO13] turns passively (IND-CPA) secure PKE schemes into actively (IND-CCA) secure ones
 - The transformation requires two hash functions (random oracles)
 - The obtained scheme is better understood as a key encapsulation mechanism (KEM)

• We can combine a **KEM** with an **SKE** scheme to get a **PKE** scheme

One-Wayness of PKE

- <u>OW-CPA:</u> PKE makes it hard to guess the message
 - The message is uniformly random and unknown to the attacker
- <u>OW-PCA</u>: As before but now the attacker can query a plaintextchecking oracle which allows to check if Dec(sk, c) = m

Modularization of the FO Transform

- We can view FO as the **concatenation** of **two transforms U** \circ **T**
 - The first transformation takes care of derandomization and allows to go from IND-CPA to OW-PCA
 - The second transformation takes care of hashing and allows to go from OW-PCA to IND-CCA

Transformation T: From IND-CPA to OW-PCA

- Encryption becomes **deterministic** (the randomness is G(m))
- Decryption re-encrypts m' using randomness $\mathbf{G}(m')$ and outputs m' if and only if it obtains c
- <u>Theorem [HKK17]</u>: Assuming (Enc, Dec) is IND-CPA (OW-CPA), (Enc', Dec') is OW-PCA

Transformation U: From OW-PCA to IND-CCA

- Encapsulation outputs $k = \mathbf{H}(c, m)$ and c
- Decapsulation obtains m' = Dec(sk, c) and outputs m'
 Here, m' could be ⊥ (explicit rejection)
- <u>Theorem [HKK17]</u>: Assuming (Enc', Dec') is OW-PCA, (Encaps, Decaps) is IND-CCA

Advanced Cryptographic Applications

Computing over Encrypted Data

- Can we have a (public-key) encryption scheme which allows to run computations over encrypted data?
- Question dating back to the late 70s
 - Ron Rivest and "privacy homomorphisms"
- Partial solutions known
 - E.g., RSA and Elgamal enjoy limited forms of homomorphism
- First solution by Craig Gentry after 30 years
 - The "Swiss Army knife of cryptography"

Motivation: Outsourcing of Computation

- Email, web search, navigation, social networking, ...
- What about **private** *x*?

Outsourcing of Computation - Privately

<u>Wish</u>: Homomorphic evaluation function: Eval: $pk, f, Enc(pk, x) \rightarrow Enc(pk, f(x))$

Fully-Homomorphic Encryption (FHE)

A Paradox (and its Resolution)

- But remember that encryption is **randomized**!
- Output of Eval will look as a fresh and random ciphertext

Trivial FHE?

- Let (KGen, Enc, Dec) be any PKE scheme
- Define the following fully-homomorphic PKE (KGen, Enc, Eval', Dec'):
 - **Eval**' $(pk, \Gamma, c) = (\Gamma, c)$
 - **Dec'**(*sk*, *c*) = Γ (**Dec**(*sk*, *c*))

<u>Wish:</u> Complexity of decryption much less than running the circuit from scratch

The Gentry-Sahai-Waters FHE Scheme

- In what follows we will present the FHE scheme due to:
 - C. Gentry, A. Sahai, B. Waters: "Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based." CRYPTO 2013
- Based on the Learning with Errors (LWE) assumption
- Only achieves levelled homomorphism
 - But can be bootstrapped to full homomorphism using a trick by Gentry (under additional assumptions)
- Plaintext space will be $\mathbb{Z}_q = [-q/2, q/2)$, for a large prime q
 - For simplicity let us write $[a]_q$ for $a \mod q$

Eigenvectors Method (Basic Idea)

- Let C_1 and C_2 be matrices for **eigenvector** \vec{s} , and **eigenvalues** x_1, x_2 (i.e., $\vec{s} \times C_i = x_i \cdot \vec{s}$)
 - $C_1 + C_2$ has eigenvalue $x_1 + x_2$ w.r.t. \vec{s}
 - $C_1 \times C_2$ has eigenvalue $x_1 \cdot x_2$ w.r.t. \vec{s}
- Idea: Let C be the ciphertext, \vec{s} be the secret key and x be the plaintext (say over \mathbb{Z}_q)
 - Homomorphism for **addition/multiplication**
 - But **insecure**: Easy to compute eigenvalues

Approximate Eigenvectors (1/2)

- Approximate variant: $\vec{s} \times C = x \cdot \vec{s} + \vec{e} \approx x \cdot \vec{s}$
 - Decryption works as long as $\|ec{e}\|_{\infty} \ll q$

$$\vec{s} \times C_1 = x_1 \cdot \vec{s} + \vec{e}_1 \qquad \vec{s} \times C_2 = x_2 \cdot \vec{s} + \vec{e}_2$$
$$\|\vec{e}_1\|_{\infty} \ll q \qquad \|\vec{e}_2\|_{\infty} \ll q$$

• Goal: Define homomorphic operations

$$C_{\text{add}} = C_1 + C_2:$$

 $\vec{s} \times (C_1 + C_2) = \vec{s} \times C_1 + \vec{s} \times C_2$
 $= x_1 \cdot \vec{s} + \vec{e}_1 + x_2 \cdot \vec{s} + \vec{e}_2$
 $= (x_1 + x_2) \cdot \vec{s} + (\vec{e}_1 + \vec{e}_2)$
Noise grows a little!

Approximate Eigenvectors (2/2)

- Approximate variant: $\vec{s} \times C = x \cdot \vec{s} + \vec{e} \approx x \cdot \vec{s}$
 - Decryption works as long as $\|ec{e}\|_{\infty} \ll q$

$$\vec{s} \times C_1 = x_1 \cdot \vec{s} + \vec{e}_1 \qquad \vec{s} \times C_2 = x_2 \cdot \vec{s} + \vec{e}_2$$
$$\|\vec{e}_1\|_{\infty} \ll q \qquad \|\vec{e}_2\|_{\infty} \ll q$$

• Goal: Define homomorphic operations

$$C_{\text{mult}} = C_1 \times C_2:$$

$$\vec{s} \times (C_1 \times C_2) = (x_1 \cdot \vec{s} + \vec{e}_1) \times C_2$$

$$= x_1 \cdot (x_2 \cdot \vec{s} + \vec{e}_2) + \vec{e}_1 \times C_2$$

$$= x_1 \cdot x_2 \cdot \vec{s} + (x_1 \cdot \vec{e}_2 + \vec{e}_1 \times C_2)$$

Noise grows!
Needs to be
small!

Shrinking Gadgets

• Write entries in C using **binary decomposition**; e.g. $\Gamma_0 = \Gamma_1$

$$C = \begin{bmatrix} 3 & 5 \\ 1 & 4 \end{bmatrix} \pmod{8} \xrightarrow{\text{yields}} \text{bits}(C) = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} \pmod{8}$$

• **Reverse** operation:

$$C = G \times G^{-1}(C) = \begin{bmatrix} 2^{N-1} & \dots & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 0 & 2^{N-1} & \dots & 2 & 1 \end{bmatrix} \times \text{bits}(C)$$
$$\Rightarrow \vec{s} \times C = \vec{s} \times G \times G^{-1}(C)$$

LWE – Rearranging Notation

Regev PKE – Pictorially

The GSW Scheme

The GSW Scheme – Homomorphism

$$\begin{array}{l} \underline{\text{Invariant: }} \vec{s} \times C = \vec{e} + x \cdot \vec{s} \times G \\
 C_{\text{mult}} = C_1 \times G^{-1}(C_2) \\
 \vec{s} \times C_1 \times G^{-1}(C_2) = (\vec{e}_1 + x_1 \cdot \vec{s} \times G) \cdot G^{-1}(C_2) \\
 = \vec{e}_1 \times G^{-1}(C_2) + x_1 \cdot \vec{s} \times G \times G^{-1}(C_2) \\
 = \vec{e}_1 \times G^{-1}(C_2) + x_1 \cdot \vec{s} \times C_2 \\
 = \vec{e}_1 \times G^{-1}(C_2) + x_1 \cdot (\vec{e}_2 + x_2 \cdot \vec{s} \times G) \\
 = (\vec{e}_1 \times G^{-1}(C_2) + x_1 \cdot \vec{e}_2) + x_1 x_2 \cdot \vec{s} \times G \\
 = \vec{e}_{\text{mult}} + x_1 x_2 \cdot \vec{s} \times G
 \end{array}$$

$\|\vec{e}_{\text{mult}}\|_{\infty} \le N \cdot \|\vec{e}_1\|_{\infty} + \|\vec{e}_2\|_{\infty} \le (N+1) \cdot \max\{\|\vec{e}_1\|, \|\vec{e}_2\|\}$

The GSW Scheme – Correctness

The GSW Scheme – Semantic Security

- Similar as in the proof of Regev PKE
- Using LWE we move to a **mental experiment** with $A \leftarrow_{\$} \mathbb{Z}_q^{n \times m}$
- Hence, by the **leftover hash lemma**, with $m = \Theta(n \log q)$, the statistical distance between $(A, A \times \vec{r})$ and uniform is negligible
 - By a hybrid argument over the columns of R, it follows that the statistical distance between $(A, A \times R)$ and uniform is also negligible
 - Thus, the ciphertext **statistically hides** the plaintext

The GSW Scheme – Parameters

- **Correctness** requires $n \cdot m \cdot (N+1)^{\tau+1} < q/4$
- Security requires $m = \Theta(n \log q)$, e.g. $m \ge 1 + 2n(2 + \log q)$
- Hardness of LWE requires $q \leq 2^{n^{\epsilon}}$ for $\epsilon < 1$
 - Substituting we get $q > (2n \log q)^{\tau+3}$
 - And thus $n^{\epsilon} > (\tau + 3)(\log n + \log \log q + 1)$ which for large τ, n yields $n^{\epsilon} > 2\tau \log n$
 - So we set $n = \max(\lambda, \lfloor 4\tau/\epsilon \log \tau^{1/\epsilon} \rfloor), q = \lfloor 2^{n^{\epsilon}} \rfloor, m = O(n^{1+\epsilon}), and \alpha = n/q = n \cdot 2^{-n^{\epsilon}}$
- Hence, the size of ciphertexts is polynomial in λ , τ thus yielding a **weakly-compact** FHE

Increasing the Homomorphic Capacity

- The only way to increase the homomorphic capacity of GSW is to pick larger parameters
- This dependence can be **broken** using a trick by Gentry
- Main idea: Do a few operations, then switch keys

How to Switch Keys

Circular Security

- The above scheme is **compact**, but **not fully homomorphic**, as we need a pair of keys **for each level** in the circuit
- A natural idea is to use a single pair (pk, sk) and include in pk'a ciphertext $\vec{c}^* \leftarrow_{\$} \mathbf{Enc}(pk, sk)$
 - Correctness still holds for this variant, but the reduction to semantic security breaks
- Workaround: Assume **circular security**
 - I.e., **Enc**(*pk*, 0) \approx_c **Enc**(*pk*, 1) even given $\vec{c}^* \leftarrow_{\$}$ **Enc**(*pk*, *sk*)
 - GSW is conjectured to have this property, but no proof of this fact is currently known

Identity-Based Encryption

- Postulated by Shamir in 1984 [Sha84]
 - Avoids the need of **certificates**
 - Introduces the so-called key escrow problem
- First realization by Boneh and Franklin in 2001 [BF01]

Selective Security of IBE

mpk, msk, random b

 $c \leftarrow \mathbf{Enc}(ID^*, x_b)$

- Every selectively secure IBE is also fully secure with an exponential loss in the parameters
 - Also, general transformations are known

Warm-up Construction [CHKP10]

- <u>Public parameters:</u> $mpk = (A_0, A_1^0, A_1^1, A_2^0, A_2^1, u)$
 - Assume, for simplicity, |ID| = 2

• Master secret key: Trapdoor for A₀

- Secret key for identity ID = 01: Short vector s s.t. $F_{01} \cdot s = u \mod q$, where $F_{01} = [A_0 | A_1^0 | A_2^1]$
- Note: A trapdoor for A_0 implies a trapdoor for F_{01}
- Encryption: Dual Regev encryption of x w.r.t. matrix F_{01}
 - The ciphertext is $\boldsymbol{c}_0^t = \boldsymbol{r}^t \cdot \boldsymbol{F}_{01} + \boldsymbol{e}^t$ and $\boldsymbol{c}_1 = \boldsymbol{r}^t \cdot \boldsymbol{u} + \boldsymbol{e}' + x \cdot q/2$
 - Bob outputs $c_1 c_0^t \cdot s \approx x \cdot q/2$

Simulation

- Assume the **challenge** identity is $ID^* = 11$
 - The reduction can't know the secret key for ID^*
- Choose A₀, A¹₁, A¹₂ uniformly at random, but sample A⁰₁, A⁰₂ with the corresponding trapdoors
- The reduction can derive trapdoors for $F_{00} = [A_0|A_1^0|A_2^0]$, $F_{01} = [A_0|A_1^0|A_2^1]$, and $F_{10} = [A_0|A_1^1|A_2^0]$ but not for $F_{11} = [A_0|A_1^1|A_2^1]$
 - This allows the reduction to simulate key extraction queries while embedding the LWE challenge in the simulation

A More Efficient Construction [ABB10]

- Public parameters: $mpk = (A_0, A_1, G, u)$
- Master secret key: Trapdoor for A₀
 - Secret key for identity *ID*: Short vector *s* s.t. $F_{ID} \cdot s = u \mod q$, where $F_{ID} = [A_0 | A_1 + ID \cdot G]$
 - As before, a trapdoor for A_0 implies a trapdoor for F_{ID}
- Encryption: Dual Regev encryption of x w.r.t. matrix F_{ID}
 - The ciphertext is $\boldsymbol{c}_0^t = \boldsymbol{r}^t \cdot \boldsymbol{F}_{ID} + \boldsymbol{e}^t$ and $\boldsymbol{c}_1 = \boldsymbol{r}^t \cdot \boldsymbol{u} + \boldsymbol{e}' + x \cdot q/2$
 - Bob outputs $c_1 c_0^t \cdot s = r^t \cdot u + e' + x \cdot q/2 r^t \cdot F_{ID} \cdot s + e^t \cdot s$ $s = r^t \cdot u + e' + x \cdot q/2 - r^t \cdot u + e^t \cdot s \approx x \cdot q/2$

Simulation Revisited

- Assume the **challenge** identity is ID^*
 - The reduction can't know the secret key for ID^*
- The reduction does not know a trapdoor for A₀, but it knows a trapdoor for the gadget matrix G
- Let $\mathbf{A}_1 = [\mathbf{A}_0 \cdot \mathbf{R} ID^* \cdot \mathbf{G}]$, where \mathbf{R} is random and low-norm
 - This is **indistinguishable** from the real **A**₁
- Note that $\mathbf{F}_{ID} = [\mathbf{A}_0 | \mathbf{A}_0 \cdot \mathbf{R} + (ID ID^*) \cdot \mathbf{G}]$
 - Using the technique of [MP12], we can derive a trapdoor for F_{ID} given a trapdoor for A_0
 - This allows to **simulate** key extraction queries for all $ID \neq ID^*$
 - The LWE challenge can be **embedded** as before

Inner-product Encryption [KSW08]

- Decryption reveals x if and only if $\langle a, b \rangle = 0$
 - Here, we can also be interested in attributes privacy
- Can be used to obtain predicate encryption for polynomial evaluation, CNFs/DNFs of bounded degree, and fuzzy IBE

Generalizing to Inner Products [AFV11]

- Public parameters: $mpk = (A, A_1, ..., A_k, G, u)$
- Master secret key: Trapdoor for A
 - Secret key for b: Short vector s_b s.t. $F_b \cdot s_b = u \mod q$, where $F_b = [A | \sum_i b_i \cdot A_i]$
- Encryption: Dual Regev encryption of x w.r.t. matrix A
 - The ciphertext is $c_0^t = r^t \cdot A + e^t$, $c' = r^t \cdot u + e' + x \cdot q/2$, and $c_i^t = r^t \cdot (A_i + a_i \cdot G) + e_i^t$ (so it indeed hides a)
 - Bob sets $\mathbf{c}_{\mathbf{b}} = \sum_{i} \mathbf{b}_{i} \cdot \mathbf{c}_{i} = \mathbf{r}^{t} \cdot (\sum_{i} \mathbf{b}_{i} \cdot \mathbf{A}_{i} + \sum_{i} \mathbf{a}_{i} \cdot \mathbf{b}_{i} \cdot \mathbf{G}) + \sum_{i} \mathbf{b}_{i} \cdot \mathbf{e}_{i}$ which equals $\mathbf{r}^{t} \cdot \sum_{i} \mathbf{b}_{i} \cdot \mathbf{A}_{i} + \sum_{i} \mathbf{b}_{i} \cdot \mathbf{e}_{i}$
 - Hence, $[c_0|c_b] \approx r^t \cdot [A|\sum_i b_i \cdot A_i]$ is a dual Regev ciphertext
 - Bob outputs $c' c_0^t \cdot s_b c_b^t \cdot s_b \approx x \cdot q/2$

Attribute-based Encryption [SW04]

- Decryption reveals x if and only if f(a) = 0
 - Here, we are not interested in attributes privacy
- Plenty of applications for privacy-preserving data mining and in cryptography for big data

Handling Multiplications [BGG+14]

- Let $c_1^t = r^t \cdot (A_1 + a_1 \cdot G) + e_1^t$ and $c_2^t = r^t \cdot (A_2 + a_2 \cdot G) + e_2^t$
- Want: $c_{12}^{t} = r^{t} \cdot (A_{12} + a_{1} \cdot a_{2} \cdot G) + e_{12}^{t}$
 - Compute $(A_1 + a_1 \cdot G) \cdot G^{-1}(-A_2) = A_1 \cdot G^{-1}(-A_2) a_1 \cdot A_2$
 - Compute $(\mathbf{A}_2 + \mathbf{a}_2 \cdot \mathbf{G}) \cdot \mathbf{a}_1 = \mathbf{a}_1 \cdot \mathbf{A}_2 + \mathbf{a}_1 \cdot \mathbf{a}_2 \cdot \mathbf{G}$
 - The **difference** is $A_{12} + a_1 \cdot a_2 \cdot G$
- So, we let $c_{12}^{t} = c_{1}^{t} \cdot G^{-1}(-A_{2}) + c_{2}^{t} \cdot a_{1}$
 - $G^{-1}(-A_2)$ and a_1 are small and do not effect noise
 - As usual, additionally let $c_0^t = r^t \cdot A + e^t$, $c' = r^t \cdot u + e' + x \cdot q/2$
 - If $a_1 \cdot a_2 = 0$, then $[c_0 | c_{12}] \approx r^t \cdot [A | A_{12}]$
 - The secret key is a **short vector** s_{12} s.t. $[A|A_{12}] \cdot s_{12} = u \mod q$
 - Bob outputs $c' c_0^t \cdot s_{12} c_{12}^t \cdot s_{12} \approx x \cdot q/2$

