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Modern Cryptography

* Cryptography is everywhere

* Credit cards, electronic passports, electronic commerce,electronic
voting, cryptocurrencies, ...

* Provable security: Reductions to solving hard problems, given
an attacker breaking security of cryptographic primitives
* Requires to believe P #+ NP (and in fact, that OWFs exist)
* Examples: factoring, discrete logarithm, bilinear maps...

* History of success

* Secret-key cryptography, public-key cryptography, identity-based
cryptography, attribute-based cryptography, program obfuscation, ...
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The Quantum Threat

* An algorithm by Shor [Sho94] solves the factoring and discrete
logarithm problems in polynomial-time on a quantum machine
* The algorithm requires an ideal quantum Turing machine

* Factoring a 1024-bit integer requires 2050 logical qubits and a
guantum circuit with billions of quantum gates

* Despite recent progress on quantum computation, current
implementations can only factor tiny numbers (e.g., 15 and 21)

* Nevertheless, the NIST started in 2017 a process to solicit,
evaluate, and standardize quantum-resistant cryptography
* The selected algorithms were announced in 2022
* Most of these algorithms are based on lattices
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What’s the Rush?

* Big quantum computers won’t be available for many years
* If ever...
e Can’t we just wait?

* Better safe than sorry
* Harvesting attacks: Store today’s keys/ciphertexts to break later

* Rewrite history: Forge signatures for old keys
* Deploying new cryptography at scale requires 10+ years
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Lattices
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What is a Lattice?

e Simply, a set of points in a high-dimensional space
* Arranged periodically

* Formally, take n linearly independent vectors (1_51, ) En) in R"
and consider all integer combinations

-

L = {all;l +--+a,b,:a4,..,a, €7}

e« Wecall (51, ) Bn) a basis

° e * The same lattice may have

° ° different equivalent basis
. ° * Even if base vectors are long, there

o o o o o are short vectors in the lattice
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History

* Geometric objects with rich mathematical structure

* Considerable mathematical interest starting from Gauss (1801),
Hermite (1850), and Minkowski (1896)

* Recently, many interesting applications (cryptanalysis, factoring
rational polynomials, finding integer relations, ...)
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Equivalent Bases

* Sometimes, we write L(B) where B is the matrix whose

columns are (bl, ) n)
* One can also define a lattice as a discrete additive subgroup of R"

* Equivalent bases:

o o o o o o o N N

(0,1)(1,1) (2,1) (1,1) . * Permute vectors (i.e.,b; & bj)

o i_../'o o / o * Negate vectors (i.e.,Bi — (—Ei))
(0,0) (0,1) (0,0) (2,0) . :
* Add integer multiple of another

vector (i.e.,Ei — Bi + k - Ej,k € 7Z)

* Theorem: Two bases B, B, are equivalentiff B, = B; - U
* U unimodular (i.e., integer matrix with det(U) = +1)
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The Fundamental Region

* The fundamental region of a lattice corresponds to a periodic
tiling of R"™ by copies of some body

* For instance, [0,1) is a fundamental region of the integer lattice Z, as
every x € Ris in the unique translate | x| 4+ [0,1)

° o o o _ o Alattice base yields a fundamental region
O / ’ called the fundamental parallelepiped

n -
Ci bi: Ci (S [0,1)}

N CH )
i=1
e Useful for measuring arbitrary points relative to a lattice

* Note x mod P(B) = (almodl)l_o)l + -+ (anmodl)I;n
* A point x is in a lattice iff x mod P(B) = (0, ..., 0)
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Determinant

* The determinant of a lattice L(B) is det(£) = |det(B)|
* Note that this is well defined, as for every unilateral U

|det(B - U)| = | det(B) - det(U)| = det(B)
* The determinant corresponds to the volume of the fundamental
parallelepiped

* The determinant is the reciprocal of the density (i.e., big determinant

means sparse lattice)
* Moreover, the volume is the same for every fundamental region
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Successive Minima

* Let 1, (£) be the length of the shortest non-zero vector in a
lattice L

e Usually, in terms of the Euclidean norm
* The shortest vector is never unique, as forevery v € L also —v € L

* More generally, A, (L) denotes the radius of the ball containing
k linearly independent vectors

* For k = n the ball contains a basis of the entire space

o ———

S _———

11

s 3 OAPIENZA

VS UNIVERSITA DI ROMA



Minkowski’s Theorem

* Lemma (Blichfeld): For any lattice £ and set § with vol(§) >
det(L), there exist distinct Zz;,Z, € S we have thatz; — z, € L
* The proof is simple and only requires volume arguments (exercise)

* Theorem (Minkowski): For any lattice L and convex, zero-
symmetric, set § with vol(§) > 2™det(L), there exists a non-

zero lattice pointin &
23, * letZ,,Z, € §/2; by Blichfeld z; —z, € L

. * Now, 2Z;,—2Z,€ §
e . - -
* So, theiraveragez;, — 7z, €S
e Corollary (Minkowski): For every L, we have

that 1, (£) < vn - det(£L)V/"
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Hard Problems

* SVP,: Given B, find a vector in L(B) with length < y - 1, (L(B))

* GapSVP,: Given B, decide if 1, (L(B))is<lor=y

* SIVP,: Given B, find n linearly independent vectors in L(B)
with length <y - 1,,(L(B))

* CVP,: Given B and v, find a lattice point that is at most y times
farther than the closest lattice point
* Itis known that SVP, < CVP,

* BDD: Find closest lattice point, given that v is already close
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General Hardness Results

1 nc/ loglogn \/ﬁ n anog logn/logn
[ L o >

NP-hard NP N coNP cryptography P

* Exact algorithms take time 2"
* Polynomial-time algorithm for gap y = 2™ loglogn/logn

* No better quantum algorithm known

* NP hardness for gap y = n¢/108logn

* For cryptographic applications, we need y = ((n)
* Not believed to be NP-hard fory = \/n
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Small Integer Solution Problem

* Fix dimension n, and modulus g (e.g., g = n?)

* Given random vectors a4, ..., a,, € Zg, find non-zero small
Z1, e, Zm € 7 such that

Zi\aq +zplap |+ z @, = |0 in Zg

e Observations:
* Trivial if the size of the z;’s is not restricted (Gaussian elimination)
* Equivalently, find non-zero shortz € Z™ st. A-z =0 € Zj

15
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SIS as a Lattice Problem

* Matrix A = (aq, ..., a,) € Zg™™
LY(A) ={zeZ™ A -z=0)}

Find short (||z]| < B « q)
solutions for random A4

~

* Theorem (Ajt96). For any n-dimensional
lattice, it holds that:

GapSVP; =, SIVP, = < SIS;

0,9)

(0,0)

\_/

o

* Also true for any lattice coset L (A) = {z€Z™A-z=u} =u +

L+(A) (i.e., inhomogenuous SIS)

16
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Learning with Errors [Reg05]

* Dimension nn, modulus g > 2, noise distribution y

* Find s € ZZ given m noisy random inner product equations

S
Ke Lg 4
+ e'
Kbt
Small noise € Zg' <
le;]| < aq; a K 1 € Zg'

17

Trivial without noise

Gaussian distribution over Z,
with std deviation > v/n and < q
e Rate parametera K 1

Need ag > +/n for worst-case
hardness and because there is an
exp((aq)?)-time attack
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Decisional LWE

* Distinguish the matrix A and the vector b from random (4, b)
* Decisional LWE is equivalent to Search LWE

/St
e A
‘ez
= — yy(n+1)xm
+ t bt — Uq
(—E pt / 1

Small noise € Zg' ( Uniform distribution over Zg” )xm
lei] <aq;a < 1 € I

iid OAPIENZA
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LWE as a Lattice Problem

* Matrix A = (ay, ..., a,,) € Zg™™
L(A) ={zeZ™ z' =s'- A}

LWE is BDD on L(A): Given
bt~ z'=s'-Afindz %

* Theorem (Reg05,Peil0). For any n-
dimensional lattice, it holds that:

GapSVP,,, SIVP,,, < LWE

(0,

q)

/\\

(0

0)

* Quantum reduction for broad parameters [Reg05]

* Classical reduction for restricted parameters (e.g., g = 2™) [Peil0]

19
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Hardness of LWE

* More formally define the LWE distribution as

A «— anm.s — Zn'
LWE|n,m,q,x] =3 (4, b):

e — ™ bt [s"- A +e'],

* Parameters:

*a =1/poly(n) ora = 2~"° (stronger assumption as a decreases)

*m = 0O(nlogqg) orm = poly(n) (stronger assumption as m
increases)

eq=2"orq = poly(n) (stronger assumption as g increases)
* Noise distribution y such that P[|e| > ag: e « x] < negl(n)

nid O/APIENZA
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Simple Properties

* Check a candidate solution t € Z
* Testif all b — (t, a) are small
*If t # s,then b — (t,a) = (s — t,a) + e is well-spread in Z,

* Shift the secret by any r € Zg
* Given (a,b = (s,a) + ¢e), output (a,b’ = b +(r,a) = (s +r,a) + e)
e Using random 7 yields a random self-reduction

* Amplification of success probabilities (i.e., non-negligible success
probability for random s € Zg implies overwhelmmg success
probability for every s € Z”)

* Multiple secrets: (a, b, = (s, a) + e, ...,(s;,a) + e;)
indistinguishable from random (a, b4, ..., b;)

21



Search/Decision Equivalence

* Suppose we are given an oracle that perfectly distinguishes
pairs (a,b = (s,a) + ¢) from random (a, b)

* To find s, it suffices to test if s; = 0

* Because we can shift s; by 0,1, ..., g — 1 (assuming g = poly(n))
* Then we can do the same for s,, ..., s,

* The test: For each (a, b), choose random r € Z, and invoke the
oracle on pairs (a’' = a — (7,0, ...,0),b)
* Notethath = (s,a’)+s,-r+e
*If s; = 0,then b = (s,a’) + e and the oracle accepts
* If s; # 0, then b is uniform (assuming g prime) and the oracle rejects

22

~Nv
XD SAPIENZA
1”»»\“‘5 UNIVERS

ITA DI ROMA



LWE with Short Secrets

* Theorem [MO01,ACPS09]: LWE is no easier if the secret is drawn
from the error distribution y
* Intuition: Finding e equivalent to finding s (i.e., b* — e* = s' - A)

» Transformation from secret s € Zf to secret & « y"
* Draw samples to get (4, b" = s - 4 + &%) for square, invertible, A
* Transform each additional sample (a, b = (s, a) + ¢e) to

a =—A1-aqb =b+(ba)=(ea)+e

* This maps uniform (a, b) to uniform (a’, b"), and thus works for
decision LWE too

SAPTENZA
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LWE vs SIS

* SIS has many valid solutions, whereas LWE only has one
* LWE < SIS

* Given z such that 4 - z = 0 from an SIS oracle, compute b - z
* Now, b' - z = e' - z is small in the LWE case, whereas b' - z is well-
spread in case b' is uniformly random

e What about the other direction?

* Not known in general
* True under quantum reductions
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Efficiency of LWE/SIS

* Getting one random-looking scalar b; € Z, requires an n-
dimensional inner product mod g

S * Can amortize each column q;
KE n A over many secrets s;, but the
q latter still requires O (n) work per
n et scalar output
* Public keys are rather large, i.e.
Kbt > n? time to encrypt/decrypt an
Small noise € Zg' ( n-bit message
|el.| < aq; a K 1 € Zgl e (Can we do better?

25
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Wishful Thinking...

 Get d pseudorandom scalars
st « lat + et =, bt from just one cheap product
< operation x
o dxd : d
= Zg Replace Z;™" chunks with Z,

* Main question: How to define the product *x so that (a, b) is
pseudorandom
* Requires care: coordinate-wise product insecure for small errors

* Answer: Let * be multiplication in a polynomial ring, e.g.
d d
Zg|X]/ (X% + 1)
* Fast and practical with the FFT: d log d operations mod g
* The same ring structure used in NTRU [HPSO08]
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LWE over Rings/Modules
* Let R = Z[X]/(X% + 1) for d a power of 2 and R, = R/qR

* Elements of R, are degree < d polynomials with coefficients mod g
* Operations over R, are very efficient using FFT-like algorithms

* Search LWE: Find secret vector of polynomials s in Rq given

* Each equation is d related equations
on a secret of dimensionn =d - k

. s 4 2 e WE:d=1k=n

S\ * la; + € _Cbi e Ring-LWE:d =n,k=1

o~
o=

e Module-LWE: Interpolate
€ ZZ - Decision LWE: Distinguish (a;, b;)
from uniform (a;, b;) in REXR,

OI ROMA
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Hardness of Ring/Module-LWE

* Theorem [LPR10]: Forany R = O

R*-GapSVP < search R*-LWEdecision < R*-LWE

* Can we dequantize the worst-case/average-case reduction?

* The classical GapSVP <= LWE reduction is of little use: for the relevant
factors, GapSVP for ideals (i.e., kK = 1) is easy

* How hard (or not) is GapSVP on ideal/module lattices?
* For polynomial approximation no significant improvement versus
general lattices (even for ideals)

* For subexponential approximation we have better quantum
algorithms for ideals, but not for k > 1

* Reverse reductions? Seems not without increasing k...
USNQESIENZA

ITA DI ROMA
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Why Lattice-based Cryptography?

* Provable security
* If scheme is not secure, one can solve hard mathematical problems
* Not always happens in current implementations (e.g., RSA)

* Worst-case security
* I[f scheme not secure, one can break every instance of lattice problems
* Factoring and discrete log only guarantee average-case security

* Still unbroken by quantum algorithms
* No progress over the last 50 years
* But we don’t know: see https://eprint.iacr.org/2024/555
* Efficiency
* Mainly additions/multiplications, no modular exponentiations

29
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https://eprint.iacr.org/2024/555

Basic Cryptographic
Applications
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One-Way Functions

* Parameters m,n,q € Z, key A € Zg™™
* Input x € {0,1}™, output f,(x) = A-x

* Theorem [Ajt96]: For m > nlogq, if SIVP is hard to
approximate in the worst-case, then [, is one-way

* Cryptanalysis: Given A4, y, find x suchthaty = A - x
* Easy problem: find arbitrary u suchthaty = A4 - u
* All solutions y = A - x are of the form t + L1 (A)

e Requires to find small vector in t + L+(A) or to find a lattice point
v € L1(A) close to t (average-case instance of CVP w.r.t. L (4))
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Collision-resistant Hash Functions

Collisions exists

inherently, but are
1a() hard to find
efficiently

*Given 4 = (ay, ..., a,,), define h4: {0,1}"— Zg

ha(Zy, s Zp) =Qq -2y + -+ a,, 7,

* Set m > nlogq in order to get compression
* Acollisiona, -z, ++a,, -z, =a, -z, +--+a,, * z,, yields a,
(z,—z)+ - +a,, - (z,,—2,,) =0,withz, —z, € {-1,0,1}

SAPTENZA
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Commitments

* Analogy: lock message in a box, give the box, keep the key
* Later give the key to open the box

* Implementation:

* Randomized function Com(x; ), where x is the message and r is the
randomness

* To open a commitment simply reveal (x,7)

* Security properties
* Hiding: Com(x; ) reveals nothing on x
* Binding: Can’t open Com(x;r) to x' # x

33
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Commitments

* Take two random SIS matrices 4, 4,
* The message is x € {0,1}™ and the randomness is r € {0,1}"
e Commitment: Com(x;1) = fy 4 (x,7) =A; - x+ A, -1
* Hiding: A4, - r = [, (r) is statistically close to uniform over Zg, and
thus x is information-theoretically hidden
* Binding: Finding (x, 1) and (x', ") such that Com(x; 1) =
Com(x’; ") directly contradicts the collision resistance of /4

SAPTENZA
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Leftover Hash Lemma

* Let H be a family of universal hash functions with domain D
and image I. Then, for x «¢ D, h <4 H,and u « I:

SD ((h, h(x)); (h,w)) < 1/2 - /IT/ID]
* Note that the function h, () = [AX7], is universal
* As Vi # Ty Palhy(F) = hy(7)] = P4[AX (R —75) = 0] = ¢ 7"
* Hence, for 7 —¢ {0,1}", A « ngm, and U ¢ ZLg, whenever
m=2+nlogq + 2n

SD ((4, [Ax#],); (4,1)) < 1/2 - \[q?/2m < 27"
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NIST Standards

36
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Falcon
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Lattice Trapdoors

* Recall: Lattice-based one-way functions
fa(x) =A-xmodq € Zj fa(s,e) =s'-A+e"modq € Z7
(short x, surjective) (short e, injective)

* Task: Invert 4
* Find the unique s (or ) such that f,(s,e) =s'- A+ e mod g
e Given u = f,(x") = A - x' mod q, sample random x « f;*(u) with
probability proportional to exp(—||x]|*/s?)
e How? Via a strong trapdoor forA (a short basis of L~ (A4))
* Deeply studied question [Babai86,Ajtai99,Klein01,GPV08,AP09,P10]
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A Different Kind of Trapdoor [MP12]

* Drawbacks of previous solutions

* Generating A with short basis is complex and slow

* |Inversion algorithms trade-off quality (i.e., length of basis vectors which
depends on the Gaussian std parameter s) for efficiency

* Alternative: The trapdoor is not a basis
e But just as powerful
* Simpler and faster

e Overview of method

e Start with fixed, public, lattice defined by gadget matrix G which admits
very fast, and parallel, algorithms for fG

 Randomize G into A via nice unimodular transform (the trapdoor)
* Reduce fA_l to fG_l plus some pre/post-processing

39
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Step 1: The Gadget Matrix

. _ ok _ _ 1xk
letg = 2" andtakeg =1 2 ... 2k-1]€ Lg
° I . k k
To invert f,: Zy X 7" — Zg
fg(s,e)=s-g+e=[s+e 2s+e - 2¢1s+e,_,;]lmodq
* Get Isb of s from 2%~1s + ¢,,_,, then repeat for the next bits of s
* Works whene,_, € [—q/4,q/4)
* To sample Gaussian preimage for u = f,(x) = (g, x)
*Fori € |0,k —1],choose x; « (2Z +u)andletu « (u—x;)/2 € Z

*Eg, k=2:xp« 2zp+u),u <« (u—22y)—u)/2 =—27y, x; «
(221 — Zo), (g,x> — ZZO + u + 2(221 — Zo) = U+ 4‘Z1 —Uu m0d4‘

40
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Step 1: The Gadget Matrix G

* Alternative view: The lattice L~ (g) has basis

[ 2
—1
S —

* The above inversion algorit

2
-1

€ ZF*k withS§ =21,
2

1 2.
hms are special cases of the randomized

nearest-plan algorithm [Bab86,Kle01,GPV08]

* Define G = 1,,®g € Z™™* (where ® is the tensor product)
 Computing /¢ * reduces to n parallel calls to fg‘1

* Also applies to H - G, for any invertible H € Z7™"

41
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Step 2: Randomize G

* Define semi-random [A4|G] for uniform A € Z}*™
* It can be seen that inverting f[ﬁﬁa] reduces to inverting fG_l [CHKP10]

e Choose a short Gaussian R € ZM*1 1084 5n( |et
= [’ R] [4|G — AR]

* A is uniform because, by the leftover hash lemma, [4|AR] is
statistically close to uniform whenm = nlogq

e Alternatively, [I|A] — A - R, + R,] is pseudorandom under the LWE
assumption (in normal form)

42



A New Trapdoor Notion

 We constructed 4 = [A|G — AR]
» Say that R is a trapdoor for A with tag H € Zg™" (invertible) if

[l

* The quality of Ris s;(R) = max ||R - ul

u:|ul|=1
* Fact: s;(R) = (y/rows + Vcols) - r for Gaussian entries w/ std dev r
* Also R is a trapdoor for A — [0|H' - G] with tag H — H' [ABB10]
* Relating new and old trapdoors

* Given basis S for L (G) and trapdoor R for 4, one can efficiently
construct basis S 4 for L1 (G) where HSAH <(s;(R)+1)- HSH

43
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Step 3: Reduce f; ' to f¢*

* Let R be a trapdoor for A withtag H =1: A - [ﬂ =G
* Inverting LWE

* Given b' = s'- A + €', recover s from b" - [R] =st-G+et- [I;]

I
 Works if each entry of e" - [ﬂ €|—q/4,q/4)

* Inverting SIS
e Given u, sample z « f-*(u) and output x = [ﬂ Z € [t (w)
*lndeed, A x=G-z=u Leaks about R!

Y=E[x-x]=E,[R-z-2t-R'] ~ R - Rt

44

SAPTENZA

QUS/  UNIVERSITA DI ROMA



Step 3: Perturbation Method [P10]

s2.]— 3,
ut-2, - u=s*?—-ut-2,-u>0

* To fix the covariance

e Generate perturbation vector p with covariance s* - I — R - R"
* Sample spherical zsuchthatG-z=u—-A-p

°Outputx=p+[ﬂ-z

A-x=A-p+A-[ﬂ-zzA-p+G-z=u

45



Falcon: Digital Signatures from SIS

* Generate uniform vk = A with trapdoor sk =T

* To sign i, use T to sample 0 = x € Z™ suchthat A - x = H(u),
where H is a public hash function

e Recall that x is drawn from a Gaussian distribution, which reveals
nothing about the trapdoor T

* To verify (u,0 = x) under vk = A simply check A - x = H(u)
and that x is sufficiently short

* Security: Forging a signature for a new message " requires
finding a short x” suchthat A-x" = H(u")
* This is equivalent to solving the SIS problem

 Signatures queries do not help because they reveal nothing about the
trapdoor T
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Crystals-Dilithium
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Canonical Identification Schemes

pk, sk

* Completeness: The honest prover convinces the honest verifier
(with all but a negligible probability)

* Passive Security: No (efficient) malicious prover knowing only
pk can convince the honest verifier

* Even in case the attacker knows many accepting transcripts
corresponding to honest protocol executions
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FS Tra nsfom> ‘ :;

pk, sk pk, sk

fb=H(x a)
* Given a canonical ID scheme, we can derive a sighature scheme
as follows:
* Alice obtains 0 = (&, y) from the prover, using the secret key sk and
choosing f = H(x, )
* Bob checks that (a, 5, y) is a valid transcript, with § = H(x, a)

NV
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The Fiat-Shamir Transform

Theorem [FS86]. If the ID scheme is passively secure, the
signature derived via the Fiat-Shamir transform is UF-CMA

* Remark: The original proof requires to model H as an ideal hash
function (random oracle)

* It is debatable in the community what such a proof means in practice

e Can we prove security in the plain model (i.e., no random
oracles)?
* Many impossibility results for general ID schemes [??7]

* Possible for some classes of ID schemes assuming so-called
correlation intractability [??7]
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Sufficient Criteria for Passive Security

pk, sk

* One can show the following criteria are sufficient for achieving
passive security:

* Special soundness: Given any pk and two accepting transcripts
(a,B,y) and (a, B',y") for pk with B # B’, there is a polynomial-time
algorithm outputting sk

* HVZK: Honest proofs reveal nothing about the secret key sk
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Proofs of Knowledge

* The special soundness property implies that any successful
prover must essentially know the secret key
* In fact, any such prover can be used to extract the secret key:

* Run the prover upon input pk in order to obtain a transcript (a, 5,7)

* Rewind the prover after it already sent a and forward it another
random challenge ', which yields a transcript (a, ', y')
* Aslongas 8 # [, special soundness allows us to obtain sk

* The above can be formalized, but the proof requires some care
* Because the transcripts (a, 8,y) and (a, 8, y") are correlated
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Honest-Verifier Zero-Knowledge

* How do we formalize that a trascript reveals nothing on sk?
* This is tricky: transcripts shall not reveal even one bit of sk

* Require that honest transcripts can be efficiently simulated

given just pk (but not sk)

* Whatever the verifier could compute via the protocol, he could have
computed by talking to himself (i.e., by running the simulator)

* A canonical ID scheme is perfect honest-verifier zero-
knowledge (HVZK) if 3 PPT § such that:

(pk, sk,S (pk)) = (pk, sk,(P(pk, sk),V(pk)))
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Canonical ID Scheme from Discrete Log

| params = (G, g,q) | x=g"
)Cj :fBZ'qW +a tiL < B s L
X, W | Check.gy =xP .«

* Special HVZK: Upon input pk = x, simulator § outputs (a, 5,y)
such that a = g¥/xP and 3,y «g L
* Special soundness: Assume we are given two accepting
transcripts (a, 5,v) and (a, B, y') for pk = x, with § # '
* This implies g¥™ V" = xB-B’
e Thus, w = (y —y") - (B — B") "1 is the discrete logarithm of x
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Let’s Try the Same Idea using Lattices

[params = q]
U «g Ly ) <
y=0-s+u —

(A, 1),s

* HVZK: Upon input pk = (4, t), simulator S outputs («, 5, y)
suchthata =A-y—f-tand f <4 Zg,y < Ly
* Special soundness: Assume we are given two accepting
transcripts(a, 3, y) and(a, 5, ¥') for pk = (4, 1), with 8 # [’
* ThisimpliesA-(y —y ) =B —-p") -t
e Thus,s = (y —v') - (B — B')~1listhe solutionforA-s =t
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Many Problems...

* The challenge space is small
« g ~ 212 for encryption
e g ~ 230 for signatures
g ~ 232 for advanced applications

* This means that a successful prover can just guess [

* The vector s we extract is not guaranteed to be small

* Recall that removing the requirement of s being small makes lattice
problems trivial

* Solution: Choose small u, [ and repeat the protocol in parallel

56 ITA DI ROMA
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Modified Protocol (Take 1)

Uy, ..., Uy <4 {0,131 M
a; = A-u, o4 € By anBr)
Yj=Bj-s+u > ( ) >

(A, 1),s

* The verifier checks the above Vj = 1, ..., k and that the
coefficients of each y; are small (i.e., in {0,1,2})

* Special soundness: Given A-y; = f;-t+ajand A-y; =

Bi -t + a; with ; # [5;, extract s = (yj — y}) - (B =B
* The elements of y; — y}- are in {—2,—1,0,1,2}, and f3; — ,B]f is in
{—1,1}, so s also liesin {—2,—1,0,1,2}
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Insecurity of the Protocol

* There are some caveats:
* We extracted a slightly bigger secret
* We need to repeat for k = 128 or k = 256 times

* Even worse, the protocol does not satisfy HVZK
* Suppose that the challengeis f =1

WHEEEINEOEES B - s = s has coefficients in {0,1}
_I_

WEEEETEE . u has coefficients in {0,1}

EEE Y coefficients
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Possible Fix?

* Maybe we can sample u from a larger domain?
* Suppose that the challengeis f =1

nn [ - s = s has coefficients in {0,1}
_I_

nn u has coefficients in {0,1,2,3,4,5}

0121236 51022 1 BEE ISR

* Whenever a y coefficient is 0 or 6 we know that s is 0 or 1, but the
other coefficients are hidden (i.e., they could be equally 0 or 1)

* So, s only effects the probability that a y coefficientis 0 or 6
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Possible Fix?

* Maybe we can sample u from a larger domain?
* Suppose that the challengeis f =1

nn [ - s = s has coefficients in {0,1}
_I_

nn u has coefficients in {0,1,2,3,4,5}

0121236 51022 1 BEE ISR

* [n other words, the coefficients 1,2,3,4,5 are equally likely to appear
regardless of the secret key

* Natural idea: Send y only when all the coefficients are in this range
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In General...

* Suppose s has coefficients in {0,1, ..., a} and that u has
coefficientsin {0,1, ...,b — 1}
* Here, b > a
*Then, foralla <i < b,wehave Pls+u=1i]=1/b
* Moreover, there are b — a such j’s and thus 1 — a/b probability of
keeping the value s secret
* The probability that a y coefficientisin{1,..,b —1}is1 —1/b
* The probability that they all areis (1 — 1/b)™
* The probability that they all are for all 4, ..., ¥ is (1 — 1/b)™*
* By setting b = mk, we get (1 — 1/b)™*~ 1/e

£} SAPIENZA
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Modified Protocol (Take 2)

Uy, oo, U {O, ;mk}m / M

PR * @y

Y =,6’j-s+uj — MK)—>
(A4,t),s

* The prover checks whether any of the coefficients contained
iny;isOormk +1

* Ifitis, abort and restart the protocol

* The verifier checks the above Vj = 1, ..., k and that the
coefficients of each y; are small (i.e., in {0, ..., mk})
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Modified Protocol (Take 2)

Uy, ..., Uy <4 {0, ..., mk}™ M@
B C M@
(A4,1),s

* Special soundness: Given A-y; = f;-t+a;and A-y; =
,8]’ - L+ a] with IB] 7= IB]’, extract s = (y] — y;) . (IB] — IBJ{)_l

* The elements of y; — y/; are in {—mk, ...mk}, and §; — 5} is in
{—1,1}, so s also lies in {—mk, ..., mk}
* HVZK: Yes, as now y; never depends on s

e Caveat: What is a; in case of abort?

SAPTENZA
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1 U <4 {0, ..., mk}™

Modified Protocol (Take 3)

@ =A-1 o Cmmma ™ s 01
WERETE D mmmmn) OS5
(A,t),S CheckA ]/] ,B]-t+a]

* The verifier checks the above Vj = 1, ..., k and that the
coefficients of each y; are small (i.e., in {0, ..., mk})

* But now it also additionally checks that
[a — H(A‘Y1 — Pt .., A Vi — DBk t)]

* In case of abort, the HVZK simulator can still send a random «
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In Practice

* The previous protocol still needs to be repeated in parallel k =
128 or 256 times

* And this is the best one can get for arbitrary lattices

* However:

* The proof size for one equation is roughly the same as the proof size
for many equations (amortization with logarithmic growth)

* Working with polynomial rings instead of Z, allows for one-shot
approximate proofs (i.e., the coefficients of s are small)

* Using more complex techniques, one obtains almost one-shot exact
proofs (i.e., the coefficients of s are in {0,1})

65
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Crystals-Kyber
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Regev PKE [Reg05]

* Key Generation: pk = (A, b) and sk = s, where b* = s - A + e" and
SEZLyg,AELL™
* Encryption: The encryption of x w.r.t. pk is made of two parts
* Ciphertext preamble ¢, = A - r for random r € {0,1}""
* Ciphertext payload ¢c; = b'-r+x-q/2
* Bob outputsc; — st ¢, = x-q/2
* Security: By LWE we can switch (4, b) with (A4, b) for uniformly

random b

* By the leftover hash lemma, we can finally replace ¢, with uniformly
random c, so that ¢, hides x information theoretically
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Dual Regev [GPVO08]

* Key Generation: pk = (A, u) andsk = r,whereu=A-randr €
(0,1}™, A € ZV™
* Encryption: The encryption of x w.r.t. pk is made of two parts
* Ciphertext preamble ¢, = b* = s*- A + e" for random s € Zj
e Ciphertext payloadc;, = s*-u+e' +x-q/2
* Bob outputsc, —c,r=x-q/2
* Security: By the leftover hash lemma, we can switch u with

uniformly random u
* By LWE we can switch (¢, ¢;) with uniformly random (c, ¢;)
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Primal versus Dual

* Public key
* Primal: pk is pseudorandom with unique sk
* Dual: pk is statistically random with many possible sk

* Ciphertext
* Primal: A fresh LWE sample with many possible coins
e Dual: Multiple LWE samples with unique coins

* Security
* Primal: Encrypting with uniform pk induces random ciphertext
* Dual: By LWE can switch the ciphertext to random

* Efficiency: The matrix A can be shared by different users
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Most Efficient [LP11]

* Key Generation: pk = (A, u) and sk = s, whereu' =s'- A4 + €'
and s € ", A € Zg™"
* Encryption: The encryption of x w.r.t. pk is made of two parts
* Ciphertext preamblec, = A-r + e forr € y"
* Ciphertext payload c;, = u‘-r+e' +x-q/2
* Bob outputsc; — st ¢, = x-q/2
* Security: By LWE we can switch (4, u) with (4, u) for uniformly

random u
* This requires LWE with secrets from the error distribution

* Next, we can replace (¢, ¢;) with uniformly random (c, ¢;)

SAPTENZA
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Fujisaki-Okamoto Transform

* The FO transform [FO99,FO13] turns passively (IND-CPA) secure
PKE schemes into actively (IND-CCA) secure ones
* The transformation requires two hash functions (random oracles)

* The obtained scheme is better understood as a key encapsulation
mechanism (KEM)

ciphertext
wee (%) & fanel < (mee)
pk sk

* We can combine a KEM with an SKE scheme to get a PKE scheme
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One-Wayness of PKE

pk, c* Challenger <
m, c '
yes/no
ml
pk, sk
m' e« M

c* < Enc(pk,m")

* OW-CPA: PKE makes it hard to guess the message
* The message is uniformly random and unknown to the attacker

* OW-PCA: As before but now the attacker can query a plaintext-
checking oracle which allows to check if Dec(sk,c) = m
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Modularization of the FO Transform
PKE

IND-CPA \ BRE [ KEM }

PKE / OW-PCA IND-CCA
OW-CPA

e We can view FO as the concatenation of two transforms U o T

* The first transformation takes care of derandomization and allows to
go from IND-CPA to OW-PCA

* The second transformation takes care of hashing and allows to go
from OW-PCA to IND-CCA
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Transformation T: From IND-CPA to OW-PCA

m
6 7o " Dec "
pk

sk

* Encryption becomes deterministic (the randomness is G(m))

* Decryption re-encrypts m’ using randomness G(m") and
outputs m' if and only if it obtains ¢

* Theorem [HKK17]: Assuming (Enc, Dec) is IND-CPA (OW-CPA),
(Enc’, Dec’) is OW-PCA

74
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Transformation U: From OW-PCA to IND-CCA

m e M
K'H €| Ene¢ ° ‘ "
pk sk

* Encapsulation outputs k = H(c,m) and ¢

* Decapsulation obtains m' = Dec(sk, ¢) and outputs m’
* Here, m' could be L (explicit rejection)

* Theorem [HKK17]: Assuming (Enc’, Dec’) is OW-PCA,
(Encaps, Decaps) is IND-CCA

75
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Advanced Cryptographic
Applications




Computing over Encrypted Data

e Can we have a (public-key) encryption scheme which allows to
run computations over encrypted data?

* Question dating back to the late 70s
* Ron Rivest and "privacy homomorphisms"

* Partial solutions known
* E.g., RSA and Elgamal enjoy limited forms of homomorphism

* First solution by Craig Gentry after 30 years
* The "Swiss Army knife of cryptography"
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Motivation: Outsourcing of Computation

* Email, web search, navigation, social networking, ...
 What about private x?

NV
=3 OAPIENZA
QY  UNIVERSITA DI ROMA

78



Outsourcing of Computation - Privately

Dec(sk,y)

= F(x) FC)

é B
Wish: Homomorphic evaluation function:
Eval: pk, f,Enc(pk, x) —» Enc(pk, f (x))

€ 4
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Fully-Homomorphic Encryption (FHE)
¢ = Enc(pk, x) /\]

y = Eval(pk, f, ¢) iﬂ o

|
pk, sk pk
Correctness: Privacy:
Dec(sk,y) = f(x) Enc(pk, x) ~ Enc(pk, 0)

FHE = Correctness V efficient f = Correctness for universal set

LLeveIIed FHE: Bounded depth fJ L: ?ﬁlj([)) over 3 ringJ
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A Paradox (and its Resolution)

xz 1fx1 —_ O

f(x1,%2,%x3) = { : _
c; = Enc(pk, x;) xg ifx; =1

¢, = Enc(pk, x;) Enc(pk, x,)
C3 = Enc(ka x3)

AH!Sox; =0
Eval(pk; f; (ClJ CZ’ C3))

* But remember that encryption is randomized!
e Output of Eval will look as a fresh and random ciphertext
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Trivial FHE?

* Let (KGen, Enc, Dec) be any PKE scheme

* Define the following fully-homomorphic PKE
(KGen, Enc, Eval’, Dec’):
« Eval'(pk,T,c) = (T, ¢)
* Dec'(sk,c) = I'(Dec(sk, c))

Wish: Complexity of decryption much less
than running the circuit from scratch
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The Gentry-Sahai-Waters FHE Scheme

* In what follows we will present the FHE scheme due to:

* C. Gentry, A. Sahai, B. Waters: "Homomorphic Encryption from

Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,
Attribute-Based." CRYPTO 2013

e Based on the Learning with Errors (LWE) assumption

* Only achieves levelled homomorphism

e But can be bootstrapped to full homomorphism using a trick by
Gentry (under additional assumptions)

* Plaintext space will be Z, = [—q/2, q/2), for a large prime ¢
* For simplicity let us write [a], for a mod q

83
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Eigenvectors Method (Basic Idea)

* Let C, and C, be matrices for eigenvector s, and eigenvalues
X1, X, (i.e., SXC; = x; + S)
* C; + C, has eigenvalue x; + x, w.r.t. s
« C;XC, has eigenvalue x; - x, w.rt. s

* |dea: Let C be the ciphertext, s be the secret key and x be the

plaintext (say over Z,)

* Homomorphism for addition/multiplication
* But insecure: Easy to compute eigenvalues
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>
XS

Approximate Eigenvectors (1

2

* Approximate variant: SXC = x-s+ e
* Decryption works as long as ||€]|. < ¢

- - -
SXCy=x,-5+86  SXC,=x,-5+¢,

€1l < q lezlle < q
* Goal: Define homomorphic operations
Cadd — Cl —+ Cz:

Noise grows a

SX(C1+C3) = §XCy + SXCy little!

=x1°§+51+x2°§--52
= (xq + x3) - S+ (€1 + &;)

nid O/APIENZA
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Approximate Eigenvectors (2/2)

» Approximate variant: SXxC =x-s+e~=x-§
* Decryption works as long as ||€]|. < ¢

- - -
SXCy=x,-5+86  SXC,=x,-5+¢,

”51“00 < q ”52“00 K q
* Goal: Define homomorphic operations
Conure = C1XCo: Noise grows!
SX(CyXCy) = (x1+ S + e;)XC, Needs to be

- - - |
= X1 (Xy: S+ €y) + e;XC, small

— x1 . x2 . §+ (x1° é)z ~+ §1XC2)

~NbV
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Shrinking Gadgets

* Write entries in C using binary decomposition; e.g.

1
1 O
13 5 yields 111
C = 1 4] (mod 8) > bits(C) = 0 1 (mod 8)
0 O
* Reverse operation: 1 0
2Nt .21 0 .. 0 O]
C=GXGT(O)=|"¢ o o vt _ 2 1|xbits(C)
"k-N = k[logq] )

= §XC = SXGXG~1(0)
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LWE — Rearranging Notation

b=3xA+7 /New secret § € Zg™1
S § —1
€ Lq New matrix
— / (n+1)xXm 7
+ M A e b
q\ -
— /1_9) = ﬁ
Small noise € Z’C"I” € ZZ"

Al — N (n+1)xXm
il < agia < 1 we: A’ = (4]1B) ~ U
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Regev PKE — Pictorially

public key small noise
(encodmg of bit x

€ 7 LE.g.,fl=x- lg/2] - (O, ...,O,—1)}

b L /\PIENZA
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The GSW Scheme

S ) = ZTZTLXN _ Z12"n><n-[logq]
/.
publig— Enc(A, x; R) = [AXR + x - G],
E ngm: n N . X
||€||?,= INXR|le < (aq) -m=n-m
Invariant: sXC = é + x - SXG

Dec(s,C) = sxCxG~1((0, ...,0,—1qg/2]))
=exG () +x-5sxGxG71((0, ...,0,—]q/2]))
=exG () +1g/2] - x =2z

Output: 0 © |z]| < q/4
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The GSW Scheme — Homomorphism
Invariant: SXC =€ + x - SXG
Conutt = C1XG~1(Cy)
§XC1XG_1(C2) — (51 + x1 ¢ §XG) ¢ G_l(Cz)
— é)]_XG_l(Cz) T x1 . §XGXG_1(62)
— é)]_XG_l(Cz) T x1 . §XCZ
é)]_XG_l(Cz) T X1 (é)z +x2 §XG)

— (81XG 1(C2) +X1 82) +xle SXG
— emu1t+x1x2 SXG

lemuitllo < N - [[€1]leo + lI€2llec = (N + 1) - max{llé, |l, ||, 1]3
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The GSW Scheme — Correctness
lesutllee < (N + 1) m - ag

@ N
Correctness:

n-m-(N+1)"*1 <q/4
¢ 4

Depth T

l€ir1llee < (N + D)||€;]l oo

léinllc <m-n=m-aq

N
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The GSW Scheme — Semantic Security

e Similar as in the proof of Regev PKE
* Using LWE we move to a mental experiment with A «¢ Zg"*™

* Hence, by the leftover hash lemma, with m = ©@(nlog g), the
statistical distance between (4, AX7) and uniform is negligible

* By a hybrid argument over the columns of R, it follows that the
statistical distance between (4, AXR) and uniform is also negligible

* Thus, the ciphertext statistically hides the plaintext

93
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The GSW Scheme — Parameters

» Correctness requiresn-m - (N + 1)*1 < g/4

* Security requiresm = O(nlogg),e.g. m =1+ 2n(2 +logq)

» Hardness of LWE requires g < 2™ fore < 1
e Substituting we get ¢ > (2nlogq)*™*3

* And thus n® > (t + 3)(logn + loglog g + 1) which for large t,n
yields n® > 27 logn

*Sowesetn = max(/l [4t/elogTV/€]), g = [2™|, m = O(n'*€), and
a=n/qg=n-2""

* Hence, the size of ciphertexts is polynomial in A, T thus yielding
a weakly-compact FHE

94

nid O/APIENZA

NIVERSITA DI ROMA



Increasing the Homomorphic Capacity

* The only way to increase the homomorphic capacity of GSW is
to pick larger parameters

* This dependence can be broken using a trick by Gentry
* Main idea: Do a few operations, then switch keys

pks, sks ‘
Switch keys pk,, sk, . ‘
sty ()
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How to Switch Keys

4 X ) 4 X )

/ Dec(sk,") \ / Dec(-,c) \E D.(+)

- C J sk y
Decryption circuit Dual view

Eval ' (D., aux) = Eval,- (Dc, Encpkr(sk))
= Enc,,;,/ (D (sk))
= Enc,,;/(x)
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Circular Security

* The above scheme is compact, but not fully homomorphic, as
we need a pair of keys for each level in the circuit

* A natural idea is to use a single pair (pk, sk) and include in pk’
a ciphertext ¢* «¢ Enc(pk, sk)
e Correctness still holds for this variant, but the reduction to semantic
security breaks

* Workaround: Assume circular security

* l.e., Enc(pk, 0) =, Enc(pk, 1) even given ¢* <4 Enc(pk, sk)

 GSW is conjectured to have this property, but no proof of this fact is
currently known
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ldentity-Based Encryption

* Postulated by Shamir in 1984 [Sha84]
* Avoids the need of certificates
* Introduces the so-called key escrow problem

* First realization by Boneh and Franklin in 2001 [BFO1]
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Selective Security of IBE

Eve D Challenger

\N mpk
:

_§ sk;p = KGen(msk,ID)

mpk, msk, random b

X0, X1 ¢ < Enc(ID*, x3)
c

guess b

* Every selectively secure IBE is also fully secure with an
exponential loss in the parameters
* Also, general transformations are known
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Warm-up Construction [CHKP10]

e Public parameters: mpk = (4,,A4°, A1, A9, AS,u)
* Assume, for simplicity, |ID| = 2

* Master secret key: Trapdoor for A

* Secret key for identity ID = 01: Short vector s s.t. Fy; - s = umod g,
where F,, = [4,|A}|A3]
* Note: A trapdoor for A, implies a trapdoor for Fy,

* Encryption: Dual Regev encryption of x w.r.t. matrix F
* The ciphertextiscy =1t Fy; +e‘andc, =rt-u+e' +x-q/2
* Boboutputsc, — ¢ s~ x-q/2

SAPTENZA
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Simulation

* Assume the challenge identity is ID* = 11
* The reduction can’t know the secret key for ID*

* Choose 4,, A7, A5 uniformly at random, but sample A5, A5 with
the corresponding trapdoors

» The reduction can derive trapdoors for F,, = [4,]|AY|AY],
Fo, = [A,]|A7|A%], and F{, = [A4,]|A7|A5] but not for
_ 11 a1
Fi1 =140|A1]|A7]
* This allows the reduction to simulate key extraction queries while
embedding the LWE challenge in the simulation

101
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A More Efficient Construction [ABB10]

* Public parameters: mpk = (Ay, A{,G,u)

* Master secret key: Trapdoor for A

* Secret key for identity ID: Short vector s s.t. F;, - s = umod g,
Where FID —_ [AO|A1 + ID . G]

* As before, a trapdoor for A, implies a trapdoor for F;
* Encryption: Dual Regev encryption of x w.r.t. matrix F;
* The ciphertextiscy =1t - F;p +etandc, =1t -u+e' +x-q/2

*Boboutputsc, —cy-s=r‘-u+e' +x-q/2—1r"-Fp-s+e"-
s=ru+e +x-q/2—-1r"-ut+e-s=x-q/2
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Simulation Revisited

* Assume the challenge identity is ID*
* The reduction can’t know the secret key for ID*

* The reduction does not know a trapdoor for A, but it knows a
trapdoor for the gadget matrix G

*letA; =|Ay- R —ID" - G|, where R is random and low-norm
* This is indistinguishable from the real 4,
* Note that F;p, = [4Ay|Ag- R+ (ID —ID™) - G]
* Using the technique of [MP12], we can derive a trapdoor for F;
given a trapdoor for 4,
* This allows to simulate key extraction queries for all ID # ID"

* The LWE challenge can be embedded as before
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a=(aq..,a;) sk,
* Decryption reveals x if and only if (a, b) = 0
* Here, we can also be interested in attributes privacy

* Can be used to obtain predicate encryption for polynomial
evaluation, CNFs/DNFs of bounded degree, and fuzzy IBE
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Generalizing to Inner Products [AFV11]
* Public parameters: mpk = (A, A4, ..., Ay, G, u)

* Master secret key: Trapdoor for A
* Secret key for b: Short vector s}, s.t. F, - s, = umod g, where Fj, =
[A| X b; - A;]
* Encryption: Dual Regev encryption of x w.r.t. matrix A
* The ciphertextiscy =rt-A+e',c'=r*-u+e' +x-q/2,andc; =
rt- (A;+a; - G) + e; (so itindeed hides a)

* BObSGtSCb =Zibi-ci :rt°(2ibi°Ai+Ziai°bi'G)-I_Zibi'ei
whichequalsr* - Y; b; - A; + X, b; - ¢

* Hence, [cylcp] = 10 - [A| X; b; - A;] is a dual Regev ciphertext
e Bob outputs ¢’ — ¢ -5, —Cp, * S = x - q/2
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Attribute-based Encryptlon [SWO04]

a=(aq..,a;) sk

* Decryption reveals x if and only if f (a) = 0
* Here, we are not interested in attributes privacy

* Plenty of applications for privacy-preserving data mining and in

cryptography for big data
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Handling Multiplications [BGG+14]

eletc; =1'-(A;+a,-G)+eiandc;, =1t (A,+a, - G) + €5

*Want: ¢j, =r'- (A,+a, -a, - G) +e’,
e Compute (A;+a, - G) -G '(-A4,)=A4, -G '(-A,) —a, A,
 Compute (A,+a, -G)-a, =a,-A,+a,-a, G
* The differenceis A, +a, -a, - G
*So,weletcl, =cf-G (=4, +c5-q4
* G~ (—A,) and a, are small and do not effect noise
* As usual, additionally letc; =r*-A+ e, ' =rt-u+e' +x-q/2
*Ifa, -a, =0, then [cy|c,] = - [A|A,]
* The secret key is a short vector s, s.t. [A|A;,] 51, = umodq
* Bob outputs ¢’ —¢; S, — €, S, *x-q/2
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