Post-quantum Cryptography

 $\overline{\mathcal{O}}$

Data Privacy and Security

Prof. Daniele Venturi Dipartimento di Informatica

Academic Year 2024-2025

Modern Cryptography

- Cryptography is **everywhere**
	- Credit cards, electronic passports, electronic commerce,electronic voting, cryptocurrencies, …
- **Provable** security: **Reductions** to solving **hard problems**, given an attacker breaking security of cryptographic primitives
	- Requires to **believe** $P \neq NP$ (and in fact, that OWFs exist)
	- Examples: factoring, discrete logarithm, bilinear maps…
- History of **success**
	- Secret-key cryptography, public-key cryptography, identity-based cryptography, attribute-based cryptography, program obfuscation, …

The Quantum Threat

- An algorithm by Shor [Sho94] solves the factoring and discrete logarithm problems in **polynomial-time** on a **quantum** machine
	- The algorithm requires an **ideal** quantum Turing machine
	- Factoring a 1024-bit integer requires **2050** logical **qubits** and a quantum circuit with **billions** of quantum gates
	- Despite recent progress on quantum computation, current implementations can only factor **tiny numbers** (e.g., 15 and 21)
- Nevertheless, the NIST started in 2017 a process to solicit, evaluate, and standardize **quantum-resistant** cryptography
	- The selected algorithms were announced in 2022
	- Most of these algorithms are based on **lattices**

What's the Rush?

- Big quantum computers won't be available for **many years**
	- If **ever**…
	- Can't we just wait?
- Better safe than sorry
	- **Harvesting attacks:** Store today's keys/ciphertexts to break later
	- **Rewrite history:** Forge signatures for old keys
	- Deploying new cryptography **at scale** requires 10+ years

Lattices

What is a Lattice?

- Simply, a set of points in a **high-dimensional** space
	- Arranged **periodically**
- Formally, take *n* linearly independent vectors $(\vec{b}_1, ..., \vec{b}_n)$ in \mathbb{R}^n and consider all **integer** combinations

$$
\mathcal{L} = \{a_1 \vec{b}_1 + \dots + a_n \vec{b}_n : a_1, \dots, a_n \in \mathbb{Z}\}\
$$

• We call
$$
(\vec{b}_1, ..., \vec{b}_n)
$$
 a **basis**

• The same lattice may have

different equivalent basis

• Even if base vectors are long, there are short vectors in the lattice

History

- **Geometric** objects with rich mathematical structure
- Considerable **mathematical interest** starting from Gauss (1801), Hermite (1850), and Minkowski (1896)

• Recently, many **interesting applications** (cryptanalysis, factoring rational polynomials, finding integer relations, …)

Equivalent Bases

- Sometimes, we write $\mathcal{L}(B)$ where B is the matrix whose columns are $(\vec{b}_1, ..., \vec{b}_n)$
	- One can also define a lattice as a **discrete additive subgroup** of ℝ"

• **Equivalent** bases:

- Permute vectors (i.e., $\vec{b}_i \leftrightarrow \vec{b}_j$)
- Negate vectors (i.e., $\vec{b}_i \leftarrow (-\vec{b}_i)$)
- Add integer multiple of another vector (i.e., $\vec{b}_i \leftarrow \vec{b}_i + k \cdot \vec{b}_j$, $k \in \mathbb{Z}$)
- **Theorem:** Two bases B_1 , B_2 are **equivalent** iff $B_2 = B_1 \cdot U$
	- *U* unimodular (i.e., integer matrix with $det(U) = \pm 1$)

The Fundamental Region

- The **fundamental region** of a lattice corresponds to a **periodic tiling** of \mathbb{R}^n by copies of some body
	- For instance, $[0,1)$ is a fundamental region of the integer lattice \mathbb{Z} , as every $x \in \mathbb{R}$ is in the unique translate $|x| + [0,1)$

• A lattice base yields a fundamental region called the **fundamental parallelepiped** \overline{n}

$$
\mathcal{P}(B) = B \cdot [0,1)^n = \left\{ \sum_{i=1}^n c_i \cdot \vec{b}_i : c_i \in [0,1) \right\}
$$

- Useful for measuring arbitrary points **relative to a lattice**
	- Note x mod $P(B) = (a_1 \text{mod} 1)\vec{b}_1 + \cdots + (a_n \text{mod} 1)\vec{b}_n$
	- A point x is in a lattice iff x mod $P(B) = (0, ..., 0)$

Determinant

- The **determinant** of a lattice $\mathcal{L}(B)$ is $\det(\mathcal{L}) = |\det(B)|$
- Note that this is well defined, as for every **unilateral**

 $|det(B \cdot U)| = |det(B) \cdot det(U)| = det(B)$

- The determinant corresponds to the **volume** of the fundamental parallelepiped
	- The determinant is the **reciprocal** of the **density** (i.e., big determinant means sparse lattice)
	- Moreover, the volume is the **same** for **every** fundamental region

Successive Minima

- Let $\lambda_1(\mathcal{L})$ be the length of the **shortest non-zero** vector in a lattice \mathcal{L}
	- Usually, in terms of the **Euclidean** norm
	- The shortest vector is **never unique**, as for every $\vec{v} \in \mathcal{L}$ also $-\vec{v} \in \mathcal{L}$
- More generally, $\lambda_k(\mathcal{L})$ denotes the radius of the ball containing **linearly independent** vectors
	- For $k = n$ the ball contains a basis of the entire space

Minkowski's Theorem

- Lemma (Blichfeld): For any lattice $\mathcal L$ and set $\mathcal S$ with $vol(\mathcal S) >$ det(*L*), there exist distinct \vec{z}_1 , $\vec{z}_2 \in S$ we have that $\vec{z}_1 - \vec{z}_2 \in L$
	- The proof is simple and only requires volume arguments (exercise)
- **Theorem (Minkowski):** For any lattice \mathcal{L} and **convex**, zero**symmetric**, set S with $vol(S) > 2ⁿ det(L)$, there exists a **nonzero** lattice point in S

- Let \vec{z}_1 , $\vec{z}_2 \in \mathcal{S}/2$; by Blichfeld $\vec{z}_1 \vec{z}_2 \in \mathcal{L}$
- Now, $2\vec{z}_1$, $-2\vec{z}_2 \in S$
- So, their average $\vec{z}_1 \vec{z}_2 \in \mathcal{S}$
- **Corollary (Minkowski):** For every L, we have that $\lambda_1(\mathcal{L}) \leq \sqrt{n} \cdot det(\mathcal{L})^{1/n}$

Hard Problems

- **SVP**_v: Given B, find a vector in $\mathcal{L}(B)$ with length $\leq \gamma \cdot \lambda_1(\mathcal{L}(B))$
- GapSVP_{v}: Given B, decide if $\lambda_1(\mathcal{L}(B))$ is ≤ 1 or $\geq \gamma$
- SIVP_{γ} : Given B, find *n* linearly independent vectors in $\mathcal{L}(B)$ with length $\leq \gamma \cdot \lambda_n(\mathcal{L}(B))$
- CVP_{γ}: Given B and \vec{v} , find a lattice point that is at most γ times **farther** than the **closest** lattice point
	- It is known that $SVP_{\nu} \leq CVP_{\nu}$
- BDD: Find **closest** lattice point, given that \vec{v} is **already close**

General Hardness Results

- Exact algorithms take time 2^n
- **Polynomial-time** algorithm for gap $\gamma = 2^n \log \log n / \log n$
- No better **quantum** algorithm known
- NP **hardness** for gap $\gamma = n^{c/\log \log n}$
	- For cryptographic applications, we need $\gamma = \Omega(n)$
	- Not believed to be NP-hard for $\gamma = \sqrt{n}$

Small Integer Solution Problem

- Fix **dimension** *n*, and **modulus** *q* (e.g., $q \approx n^2$)
- Given random vectors $a_1, ..., a_m \in \mathbb{Z}_q^n$, find non-zero small $z_1, ..., z_m \in \mathbb{Z}$ such that

$$
z_1 \cdot \begin{vmatrix} a_1 & +z_2 & a_2 & + \cdots + z_m & a_m \end{vmatrix} = 0 \quad \text{in } \mathbb{Z}_q^n
$$

- Observations:
	- Trivial if the size of the z_i 's is **not restricted** (Gaussian elimination)
	- Equivalently, find non-zero short $z \in \mathbb{Z}^m$ s.t. $A \cdot z = 0 \in \mathbb{Z}_q^n$

SIS as a Lattice Problem • Matrix $\boldsymbol{A} = (\boldsymbol{a}_1, ..., \boldsymbol{a}_m) \in \mathbb{Z}_q^{n \times m}$ $\mathcal{L}^{\perp}(A) = \{z \in \mathbb{Z}^m : A \cdot z = 0\}$ • **Theorem (Ajt96).** For any n-dimensional lattice, it holds that: $\text{GapSVP}_{\beta\sqrt{n}}$, $\text{SIVP}_{\beta\sqrt{n}} \leq \text{SIS}_{\beta}$ $(0, q)$ $(0, 0)$ (0,0) Find **short** ($||z|| \leq \beta \ll q$) solutions for **random**

• Also true for any lattice **coset** $\mathcal{L}_{\mathbf{u}}^{\perp}(A) = \{ \mathbf{z} \in \mathbb{Z}^m : A \cdot \mathbf{z} = \mathbf{u} \} = \mathbf{u} +$ $\mathcal{L}^{\perp}(A)$ (i.e., **inhomogenuous** SIS)

Learning with Errors [Reg05]

- Dimension *n*, modulus $q > 2$, noise distribution χ
- Find $s \in \mathbb{Z}_q^n$ given m noisy random inner product equations

- Trivial **without** noise
- **Gaussian** distribution over ℤ, with std deviation $\geq \sqrt{n}$ and $\ll q$
	- Rate parameter $\alpha \ll 1$
- Need $\alpha q > \sqrt{n}$ for **worst-case hardness** and because there is an $\exp((\alpha q)^2)$ -time attack

Decisional LWE

- **Distinguish** the matrix \vec{A} and the vector \vec{b} from random (\vec{A}, \vec{b})
	- Decisional LWE is **equivalent** to Search LWE

LWE as a Lattice Problem

LWE is BDD on $\mathcal{L}(\bm{A})$: Given $b^{\dagger} \approx z^{\dagger} = s^{\dagger} \cdot A$ find z

• **Theorem (Reg05, Pei10).** For any n -
dimensional lattice, it holds that:

 $GapSVP_{\alpha n}$, $SIVP_{\alpha n} \leq LWE$

 $(0, 0)$ (0,0)

 $(0, q)$

- **Quantum** reduction for **broad** parameters [Reg05]
- **Classical** reduction for **restricted** parameters (e.g., $q \approx 2^n$) [Pei10]

Hardness of LWE

• More formally define the **LWE distribution** as

LWE[n, m, q,
$$
\chi
$$
] = $\{(A, b):$
 $e \leftarrow \chi^m$; $b^{\text{t}} = [s^{\text{t}} \cdot A + e^{\text{t}}]_q\}$

- Parameters:
	- $\alpha = 1/\text{poly}(n)$ or $\alpha = 2^{-n^{\epsilon}}$ (stronger assumption as α decreases)
	- $m = \Theta(n \log q)$ or $m = \text{poly}(n)$ (**stronger** assumption as m **increases**)
	- $q = 2^{n^{\epsilon}}$ or $q = \text{poly}(n)$ (**stronger** assumption as q **increases**)
	- Noise distribution χ such that $\mathbb{P}[\left|e\right| > \alpha q : e \leftarrow \chi] \leq \text{negl}(n)$

Simple Properties

- Check a **candidate** solution $\boldsymbol{t} \in \mathbb{Z}_q^n$
	- Test if all $\mathbf{b} \langle \mathbf{t}, \mathbf{a} \rangle$ are small
	- If $t \neq s$, then $b \langle t, a \rangle = \langle s t, a \rangle + e$ is well-spread in \mathbb{Z}_q
- Shift the secret by any $\boldsymbol{r} \in \mathbb{Z}_q^n$
	- Given $(a, b = \langle s, a \rangle + e)$, output $(a, b' = b + \langle r, a \rangle = \langle s + r, a \rangle + e)$
	- Using **random** yields a random **self-reduction**
	- **Amplification** of success probabilities (i.e., **non-negligible** success probability for random $s \in \mathbb{Z}_q^n$ implies overwhelming success probability for **every** $s \in \mathbb{Z}_q^n$)
- **Multiple** secrets: $(a, b_1 = \langle s_1, a \rangle + e_1, ..., \langle s_t, a \rangle + e_t)$ indistinguishable from **random** $(a, b_1, ..., b_t)$

Search/Decision Equivalence

- Suppose we are given an oracle that **perfectly distinguishes** pairs $(a, b = \langle s, a \rangle + e)$ from random (a, b)
- To find s_1 , it suffices to **test** if $s_1 = 0$
	- Because we can **shift** s_1 by 0,1, ..., $q 1$ (assuming $q = \text{poly}(n)$)
	- Then we can do the same for $s_2, ..., s_n$
- The test: For each (a, b) , choose **random** $r \in \mathbb{Z}_q$ and invoke the oracle on pairs $(a' = a - (r, 0, ..., 0), b)$
- Note that $b = \langle s, a' \rangle + s_1 \cdot r + e$
	- If $s_1 = 0$, then $b = \langle s, a' \rangle + e$ and the oracle **accepts**
	- If $s_1 \neq 0$, then *b* is **uniform** (assuming q **prime**) and the oracle **rejects**

LWE with Short Secrets

- **Theorem [M01,ACPS09]:** LWE is **no easier** if the secret is drawn from the **error distribution** χ
	- Intuition: Finding *e* equivalent to finding *s* (i.e., $b^t e^t = s^t \cdot A$)
- Transformation from secret $\boldsymbol{s} \in \mathbb{Z}_q^n$ to secret $\boldsymbol{\bar{e}} \leftarrow \chi^n$
	- Draw samples to get $(\overline{A}, \overline{b}^t = s^t \cdot \overline{A} + \overline{e}^t)$ for square, invertible, \overline{A}
	- Transform each **additional** sample $(a, b = \langle s, a \rangle + e)$ to

$$
a'=-\overline{A}^{-1}\cdot a,b'=b+\langle\overline{b},a'\rangle=\langle\overline{e},a'\rangle+e
$$

• This maps $uniform(a, b)$ to $uniform(a', b')$, and thus works for **decision** LWE too

LWE vs SIS

- SIS has **many** valid solutions, whereas LWE only has **one**
- \cdot LWE \leq SIS
	- Given **z** such that $A \cdot z = 0$ from an SIS oracle, compute $b^t \cdot z$
	- Now, $b^t \cdot z = e^t \cdot z$ is small in the LWE case, whereas $b^t \cdot z$ is well**spread** in case b^t is uniformly random
- What about the other direction?
	- Not known **in general**
	- True under **quantum reductions**

Efficiency of LWE/SIS

• Getting one random-looking scalar $\mathbf{b}_i \in \mathbb{Z}_q$ requires an n dimensional **inner product** mod

- **Can amortize** each column a_i over **many secrets** s_i , but the latter still requires $\tilde{O}(n)$ work per scalar output
- Public keys are **rather large**, i.e. $>$ n^2 time to encrypt/decrypt an n -bit message
- Can we do better?

Wishful Thinking…

- Get *d* **pseudorandom** scalars from just one **cheap product** operation \star
- Replace $\mathbb{Z}_q^{d \times d}$ chunks with \mathbb{Z}_q^{d}
- **Main question:** How to define the product \star so that (a, b) is **pseudorandom**
	- Requires care: **coordinate-wise** product **insecure** for **small** errors
- **Answer:** Let \star be multiplication in a polynomial ring, e.g. $\mathbb{Z}_q^d[X]/(X^d+1)$
	- **Fast** and **practical** with the FFT: $d \log d$ operations mod q
	- The same **ring structure** used in NTRU [HPS08]

LWE over Rings/Modules

• Let $R = \mathbb{Z}[X]/(X^d + 1)$ for d a power of 2 and $R_q = R/qR$

- Elements of R_q are degree $< d$ **polynomials** with coefficients $mod q$
- Operations over R_q are **very efficient** using FFT-like algorithms
- **Search LWE:** Find secret vector of **polynomials** s in R_q^k given

- **Each equation is d related equations** on a secret of dimension $n = d \cdot k$
	- LWE: $d = 1, k = n$
	- Ring-LWE: $d = n, k = 1$
	- Module-LWE: Interpolate
- **Decision LWE:** Distinguish (a_i, b_i) from uniform $(\boldsymbol{a}_i,\boldsymbol{b}_i)$ in $R_q^k{\times}R_q$

Hardness of Ring/Module-LWE

• **Theorem [LPR10]:** For any $R = O_K$

R^k -GapSVP \leq search R^k -LWEdecision $\leq R^k$ -LWE

- Can we **dequantize** the worst-case/average-case reduction?
	- The **classical** GapSVP <= LWE reduction is of little use: for the relevant factors, GapSVP for **ideals** (i.e., $k = 1$) is **easy**
- How hard (or not) is GapSVP on *ideal/module lattices*?
	- For **polynomial approximation** no significant improvement versus general lattices (even for ideals)
	- For **subexponential approximation** we have better **quantum** algorithms for **ideals**, but not for $k > 1$
- **Reverse** reductions? Seems not **without** increasing …

Why Lattice-based Cryptograp

- **Provable** security
	- If scheme is not secure, one can solve hard r
	- Not always happens in current implementations
- **Worst-case** security
	- If scheme not secure, one can break **every** ir
	- Factoring and discrete log only guarantee av
- Still **unbroken** by quantum algorithms
	- No progress over the last 50 years
	- But we don't know: see https://eprint.jacr.org
- Efficiency
	- Mainly additions/multiplications, no modula

Basic Cryptographic Applications

One-Way Functions

- Parameters $m, n, q \in \mathbb{Z}$, key $A \in \mathbb{Z}_q^{n \times m}$
- Input $x \in \{0,1\}^m$, output $f_A(x) = A \cdot x$
- **Theorem [Ajt96]:** For $m > n \log q$, if **SIVP** is **hard** to approximate in the **worst-case**, then f_A is **one-way**
- Cryptanalysis: Given A, y, find x such that $y = A \cdot x$
	- **Easy** problem: find **arbitrary u** such that $y = A \cdot u$
	- All solutions $y = A \cdot x$ are of the form $t + L^{\perp}(A)$
	- Requires to find small vector in $t + \mathcal{L}^{\perp}(A)$ or to find a lattice point $v \in L^{\perp}(A)$ close to t (average-case instance of CVP w.r.t. $L^{\perp}(A)$)

Collision-resistant Hash Functions

Collisions **exists inherently**, but are hard to find **efficiently**

• Given $\pmb{A} = (\pmb{a}_1, ..., \pmb{a}_m)$, define $h_A\!:\!\{0,1\}^m \!\!\rightarrow \mathbb{Z}_q^n$

$$
h_A(z_1,\ldots,z_m) = a_1 \cdot z_1 + \cdots + a_m \cdot z_m
$$

- Set $m > n \log q$ in order to get **compression**
- A collision $a_1 \cdot z_1 + \cdots + a_m \cdot z_m = a_1 \cdot z'_1 + \cdots + a_m \cdot z'_m$ yields $a_1 \cdot$ $(z_1 - z_1') + \cdots + \overline{a_m} \cdot (z_m - z_m') = 0$, with $z_m - z_m' \in \{-1, 0, 1\}$

Commitments

- Analogy: **lock** message in a box, give the box, keep the key
	- Later give the key to **open** the box
- Implementation:
	- **Randomized** function $\text{Com}(x; r)$, where x is the message and r is the randomness
	- To **open** a commitment simply reveal (x, r)
- Security properties
	- **Hiding:** Com $(x; r)$ reveals nothing on x
	- **Binding: Can't open Com** $(x; r)$ to $x' \neq x$

Commitments

- Take two **random** SIS matrices A_1, A_2
- The **message** is $x \in \{0,1\}^m$ and the **randomness** is $r \in \{0,1\}^m$
- Commitment: $\text{Com}(x; r) = f_{A_1, A_2}(x; r) = A_1 \cdot x + A_2 \cdot r$
	- **Hiding:** $A_2 \cdot r = f_{A_2} (r)$ is **statistically** close to **uniform** over \mathbb{Z}_q^n , and thus x is information-theoretically **hidden**
	- **Binding:** Finding (x, r) and (x', r') such that $Com(x; r) =$ $\text{Com}(x';r')$ directly contradicts the **collision resistance** of f_{A_1,A_2}

Leftover Hash Lemma

- \bullet Let H be a family of **universal hash functions** with domain D and image I. Then, for $x \leftarrow_s D$, $h \leftarrow_s H$, and $u \leftarrow_s I$: $\mathbb{S}\mathbb{D}\left(\left(h,h(x)\right);(h,u)\right)\leq 1/2\cdot\sqrt{|I|/|D|}$
- Note that the function $h_A(\vec{r}) = [A \times \vec{r}]_q$ is **universal**
	- As $\forall \vec{r}_1 \neq \vec{r}_2$: $\mathbb{P}_A[h_A(\vec{r}_1) = h_A(\vec{r}_2)] = \mathbb{P}_A[A \times (\vec{r}_1 \vec{r}_2) = \vec{0}] = q^{-n}$
- Hence, for $\vec{r} \leftarrow_{\$} \{0,1\}^m$, $A \leftarrow_{\$} \mathbb{Z}_q^{n \times m}$, and $\vec{u} \leftarrow_{\$} \mathbb{Z}_q^n$, whenever $m = 2 + n \log q + 2n$

$$
\mathbb{SD}\left(\left(A,\left[A\times\vec{r}\right]_q\right);(A,\vec{u})\right) \le 1/2\cdot\sqrt{q^n/2^m} \le 2^{-n}
$$

NIST Standards

Falcon

Lattice Trapdoors

• Recall: Lattice-based **one-way functions**

 $f_A(x) = A \cdot x \mod q \in \mathbb{Z}_q^n$

$$
\begin{array}{c}\n n \\
q\n\end{array}\n\quad f_A(\mathbf{s}, e) = \mathbf{s}^{\mathrm{t}} \cdot A + e^{\mathrm{t}} \bmod q \in \mathbb{Z}_q^m
$$

(short \bm{x} , surjective) (short \bm{e} , injective)

- Task: **Invert**
	- Find the **unique** s (or e) such that $f_A(s, e) = s^t \cdot A + e^t \mod q$
	- Given $u = f_A(x') = A \cdot x' \bmod q$, sample random $x \leftarrow f_A^{-1}(u)$ with probability proportional to $\exp(-||x||^2/s^2)$
- How? Via a **strong trapdoor** for A (a **short basis** of $\mathcal{L}^{\perp}(A)$)
	- Deeply studied question [Babai86,Ajtai99,Klein01,GPV08,AP09,P10]

A Different Kind of Trapdoor [MP12]

- Drawbacks of previous solutions
	- Generating A with short basis is **complex** and **slow**
	- Inversion algorithms trade-off **quality** (i.e., length of basis vectors which depends on the Gaussian std parameter s) for **efficiency**
- Alternative: The trapdoor is **not a basis**
	- But just **as powerful**
	- **Simpler** and **faster**
- Overview of method
	- Start with *fixed*, *public*, lattice defined by gadget matrix G which admits very **fast**, and **parallel**, algorithms for f_G^{-1}
	- **Randomize** G into A via nice **unimodular** transform (the trapdoor)
	- **Reduce** f_A^{-1} to f_G^{-1} plus some pre/post-processing

Step 1: The Gadget Matrix

- Let $q = 2^k$ and take $g = \begin{bmatrix} 1 & 2 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}$
- To invert $f_{\bm{g}} \colon \mathbb{Z}_q{\times}\mathbb{Z}^k \to \mathbb{Z}_q^k$

$$
f_g(s, e) = s \cdot g + e = [s + e_0 \quad 2s + e_1 \quad \cdots \quad 2^{k-1}s + e_{k-1}] \bmod q
$$

- Get lsb of s from $2^{k-1}s + e_{k-1}$, then repeat for the next bits of s
- Works when $e_{k-1} \in [-q/4, q/4]$
- To sample Gaussian preimage for $u = f_a(x) = \langle g, x \rangle$
	- For $i \in [0, k-1]$, choose $x_i \leftarrow (2\mathbb{Z} + u)$ and let $u \leftarrow (u x_i)/2 \in \mathbb{Z}$
	- E.g., $k = 2: x_0 \leftarrow (2z_0 + u)$, $u \leftarrow (u 2z_0 u)/2 = -z_0$, $x_1 \leftarrow$ $(2z_1 - z_0)$, $\langle g, x \rangle = 2z_0 + u + 2(2z_1 - z_0) = u + 4z_1 = u \mod 4$

Step 1: The Gadget Matrix G

• Alternative view: The **lattice** $\mathcal{L}^{\perp}(\mathbf{q})$ has **basis**

$$
\mathbf{S} = \begin{bmatrix} 2 & & & \\ -1 & 2 & & \\ & -1 & \ddots & \\ & & \ddots & 2 & \\ & & -1 & 2 \end{bmatrix} \in \mathbb{Z}^{k \times k}, \text{with } \tilde{\mathbf{S}} = 2 \cdot \mathbf{I}_k
$$

- The above inversion algorithms are special cases of the randomized **nearest-plan algorithm** [Bab86,Kle01,GPV08]
- Define $\boldsymbol{G} = I_n \otimes \boldsymbol{g} \in \mathbb{Z}^{n \times nk}$ (where \otimes is the **tensor** product)
	- Computing f_G^{-1} reduces to n **parallel calls** to f_g^{-1}
	- Also applies to $H \cdot G$, for any **invertible** $H \in \mathbb{Z}_q^{n \times n}$

Step 2: Randomize G

- Define semi-random $[\overline{A} | G]$ for uniform $\overline{A} \in \mathbb{Z}_q^{n \times \overline{m}}$
	- It can be seen that inverting $f_{\overline{[A]}G]}^{-1}$ reduces to inverting f_G^{-1} [CHKP10]
- Choose a **short Gaussian** $R \in \mathbb{Z}^{\overline{m} \times n \log q}$ and let

$$
A = [\overline{A} | G] \cdot \begin{bmatrix} I & R \\ & I \end{bmatrix} = [\overline{A} | G - \overline{A}R]
$$

- A is uniform because, by the leftover hash lemma, $[A|AR]$ is **statistically close** to uniform when $\overline{m} \approx n \log q$
- Alternatively, $\left| I|\overline{A} \right| \overline{A} \cdot R_1 + R_2$ is **pseudorandom** under the LWE assumption (in normal form)

A New Trapdoor Notion

- We constructed $A = \overline{[A]G} \overline{A}R$
- Say that R is a *trapdoor* for A with $\textbf{tag } H \in \mathbb{Z}_q^{n \times n}$ (invertible) if

$$
A \cdot \begin{bmatrix} R \\ I \end{bmatrix} = H \cdot G
$$

- The **quality** of **R** is $s_1(R) = \max_{\text{all } R \in \mathbb{R}}$ $u: ||u|| = 1$ $\mathbf{R} \cdot \mathbf{u}$
- **Fact:** $s_1(R) \approx (\sqrt{\text{rows}} + \sqrt{\text{cols}}) \cdot r$ for Gaussian entries w/ std dev r
- Also **R** is a trapdoor for $A [0]H' \cdot G$ with tag $H H'$ [ABB10]
- Relating new and old trapdoors
	- Given basis S for $\mathcal{L}^{\perp}(G)$ and trapdoor R for A, one can **efficiently** construct **basis** S_A for $\mathcal{L}^{\perp}(G)$ where $\|\tilde{S}_A\| \leq (s_1(R) + 1) \cdot \|\tilde{S}\|$

Step 3: Reduce f_A^{-1} to f_G^{-1}

- Let R be a **trapdoor** for A with $\text{tag } H = I: A$. R \overline{I} $= G$
- Inverting LWE
	- Given $\boldsymbol{b}^{\mathrm{t}} = \boldsymbol{s}^{\mathrm{t}}\cdot\boldsymbol{A} + \boldsymbol{e}^{\mathrm{t}}$, recover s from $\boldsymbol{b}^{\mathrm{t}}\cdot\boldsymbol{R}$ \overline{I} $= s^{\rm t} \cdot G + e^{\rm t} \cdot \left[\frac{R}{I} \right]$ \overline{I}
	- Works if **each entry** of $e^t \cdot \left\lceil \frac{R}{I} \right\rceil$ $\left[\begin{array}{c} \Gamma \\ I \end{array} \right] \in \left[-q/4, q/4 \right)$
- Inverting SIS
	- Given u , sample $z \leftarrow f_G^{-1}(u)$ and output $x =$ \boldsymbol{R} $\left[\frac{R}{I}\right] \cdot z \in f_A^{-1}(u)$
	- Indeed, $A \cdot x = G \cdot z = u$

 \rightarrow Leaks about $R!$

$$
\Sigma = \mathbb{E}_x[x \cdot x^t] = \mathbb{E}_z[R \cdot z \cdot z^t \cdot R^t] \approx R \cdot R^t
$$

Step 3: Perturbation Method [P10]

- Generate **perturbation** vector **p** with covariance $s^2 \cdot I R \cdot R^t$
- Sample **spherical z** such that $\mathbf{G} \cdot \mathbf{z} = \mathbf{u} \mathbf{A} \cdot \mathbf{p}$
- Output $\boldsymbol{x} = \boldsymbol{p} + \begin{bmatrix} \boldsymbol{R} \\ \boldsymbol{I} \end{bmatrix}$ $\frac{1}{I}$ \cdot Z

$$
A \cdot x = A \cdot p + A \cdot \begin{bmatrix} R \\ I \end{bmatrix} \cdot z = A \cdot p + G \cdot z = u
$$

Falcon: Digital Signatures from SIS

- Generate **uniform** $vk = A$ with **trapdoor** $sk = T$
- To sign μ , use **T** to **sample** $\sigma = x \in \mathbb{Z}^m$ such that $A \cdot x = H(\mu)$, where H is a **public** hash function
	- Recall that is drawn from a **Gaussian distribution**, which **reveals nothing** about the trapdoor T
- To verify $(\mu, \sigma = \mathbf{x})$ under $vk = A$ simply check $A \cdot \mathbf{x} = H(\mu)$ and that x is **sufficiently** short
- Security: **Forging** a signature for a new message μ^* requires finding a **short** x^* such that $A \cdot x^* = H(\mu^*)$
	- This is **equivalent** to solving the SIS problem
	- Signatures queries **do not help** because they **reveal nothing** about the trapdoor T

Crystals-Dilithium

Canonical Identification Schemes

- **Completeness:** The **honest** prover convinces the **honest** verifier (with all but a negligible probability)
- **Passive Security:** No (**efficient**) **malicious** prover knowing only pk can convince the **honest** verifier
	- Even in case the attacker knows many **accepting transcripts** corresponding to **honest** protocol executions

- Given a **canonical** ID scheme, we can derive a **signature scheme** as follows:
	- Alice obtains $\sigma = (\alpha, \gamma)$ from the **prover**, using the **secret key** sk and choosing $\beta = H(x, \alpha)$
	- Bob checks that (α, β, γ) is a **valid transcript**, with $\beta = H(x, \alpha)$

The Fiat-Shamir Transform

Theorem [FS86]. If the ID scheme is **passively** secure, the signature derived via the **Fiat-Shamir** transform is **UF-CMA**

- **Remark:** The original proof requires to model H as an **ideal** hash function (**random oracle**)
	- It is **debatable** in the community what such a proof means in **practice**
- Can we prove security in the **plain model** (i.e., no random oracles)?
	- Many **impossibility** results for **general** ID schemes [???]
	- **Possible** for **some** classes of ID schemes assuming so-called **correlation intractability** [???]

Sufficient Criteria for Passive Security

- One can show the following criteria are **sufficient** for achieving **passive security**:
	- \cdot **Special soundness:** Given any pk and two **accepting** transcripts (α, β, γ) and $(\alpha, \beta', \gamma')$ for pk with $\beta \neq \beta'$, there is a polynomial-time algorithm **outputting**
	- **HVZK: Honest** proofs **reveal nothing** about the secret key sk

Proofs of Knowledge

- The **special soundness** property implies that any successful prover must essentially **know the secret key**
- In fact, any such prover can be used to **extract** the secret key:
	- Run the prover upon input pk in order to obtain a transcript (α, β, γ)
	- **Rewind** the prover after it already sent α and forward it **another random challenge** β' , which yields a transcript $(\alpha, \beta', \gamma')$
	- As long as $\beta \neq \beta'$, **special soundness** allows us to obtain sk
- The above can be formalized, but the proof requires **some care**
	- Because the transcripts (α, β, γ) and $(\alpha, \beta', \gamma')$ are **correlated**

Honest-Verifier Zero-Knowledge

- How do we formalize that a trascript **reveals nothing** on sk ?
	- This is tricky: transcripts shall not reveal even **one bit** of
- Require that honest transcripts can be **efficiently simulated** given just pk (but not sk)
	- Whatever the verifier could compute via the protocol, he could have computed by **talking to himself** (i.e., by running the simulator)
- A canonical ID scheme is **perfect honest-verifier zeroknowledge** (HVZK) if \exists PPT S such that:

$$
(pk, sk, S(pk)) \equiv (pk, sk, \langle P(pk, sk), V(pk) \rangle)
$$

Canonical ID Scheme from Discrete Log

- **Special HVZK:** Upon input $pk = x$, **simulator** *S* outputs (α, β, γ) such that $\alpha = g^{\gamma}/x^{\beta}$ and $\beta, \gamma \leftarrow_s Z_a$
- **Special soundness:** Assume we are given two accepting transcripts (α, β, γ) and $(\alpha, \beta', \gamma')$ for $pk = x$, with $\beta \neq \beta'$
	- This implies $q^{\gamma-\gamma} = x^{\beta-\beta}$
	- Thus, $w = (\gamma \gamma') \cdot (\beta \beta')^{-1}$ is the **discrete logarithm** of x

Let's Try the Same Idea using Lattices

- **HVZK:** Upon input $pk = (A, t)$, **simulator** S outputs (α, β, γ) such that $\alpha = A \cdot \gamma - \beta \cdot t$ and $\beta \leftarrow_{\$} \mathbb{Z}_q, \gamma \leftarrow_{\$} \mathbb{Z}_q^m$
- **Special soundness:** Assume we are given two accepting transcripts (α, β, γ) and $(\alpha, \beta', \gamma')$ for $pk = (A, t)$, with $\beta \neq \beta'$
	- This implies $A \cdot (\gamma \gamma') = (\beta \beta') \cdot t$
	- Thus, $\boldsymbol{s} = (\boldsymbol{\gamma} \boldsymbol{\gamma}') \cdot (\beta \beta')^{-1}$ is the **solution** for $\boldsymbol{A} \cdot \boldsymbol{s} = \boldsymbol{t}$

Many Problems…

- The challenge space is **small**
	- $q \approx 2^{12}$ for **encryption**
	- $q \approx 2^{30}$ for **signatures**
	- $q \approx 2^{32}$ for **advanced applications**
- This means that a **successful prover** can just **guess** β
- The vector we extract is **not guaranteed to be small**
	- Recall that **removing** the requirement of s being small makes lattice problems **trivial**
- **Solution:** Choose small u, β and repeat the protocol in parallel

Modified Protocol (Take 1)

- The verifier checks the above $\forall j = 1, ..., k$ and that the coefficients of each γ_i are **small** (i.e., in {0,1,2})
- **Special soundness:** Given $A \cdot \gamma_j = \beta_j \cdot t + \alpha_j$ and $A \cdot \gamma'_j =$ $\beta'_j \cdot t + \alpha_j$ with $\beta_j \neq \beta'_j$, extract $\mathbf{s} = (\boldsymbol{\gamma}_j - \boldsymbol{\gamma}'_j) \cdot (\beta_j - \beta'_j)^{-1}$
	- The elements of $\gamma_j \gamma'_j$ are in {-2, -1,0,1,2}, and $\beta_j \beta'_j$ is in ${-1,1}$, so *s* also lies in ${-2, -1, 0, 1, 2}$

Insecurity of the Protocol

- There are some **caveats**:
	- We **extracted** a **slightly bigger** secret
	- We need to **repeat** for $k = 128$ or $k = 256$ times
- Even worse, the protocol **does not** satisfy **HVZK**
	- Suppose that the challenge is $\beta = 1$

Possible Fix?

- Maybe we can sample **u** from a **larger domain**?
	- Suppose that the challenge is $\beta = 1$

- Whenever a γ coefficient is 0 or 6 we know that \boldsymbol{s} is 0 or 1, but the other coefficients are **hidden** (i.e., they could be **equally** 0 or 1)
- So, s only effects the probability that a γ coefficient is 0 or 6

Possible Fix?

- Maybe we can sample **u** from a **larger domain**?
	- Suppose that the challenge is $\beta = 1$

- In other words, the coefficients 1,2,3,4,5 are **equally likely** to appear **regardless** of the **secret key**
- Natural idea: Send γ only when all the coefficients are in this range

In General…

- Suppose s has coefficients in $\{0,1,\ldots,a\}$ and that \boldsymbol{u} has coefficients in $\{0,1,\dots,b-1\}$
	- Here, $b > a$
- Then, for all $a \le i < b$, we have $\mathbb{P}[s + u = i] = 1/b$
	- Moreover, there are $b a$ such j's and thus $1 a/b$ probability of keeping the value **secret**
- The probability that a γ coefficient is in $\{1, ..., b-1\}$ is $1-1/b$
	- The probability that they **all are** is $(1 1/b)^m$
	- The probability that they **all are for all** $\gamma_1, ..., \gamma_k$ is $(1 1/b)^{mk}$
	- By setting $b = mk$, we get $(1 1/b)^{mk} \approx 1/e$

Modified Protocol (Take 2)

- The prover checks whether **any** of the coefficients contained in γ_i is 0 or $mk + 1$
	- If it is, **abort** and **restart** the protocol
- The verifier checks the above $\forall j = 1, ..., k$ and that the coefficients of each γ_i are **small** (i.e., in $\{0, ..., mk\}$)

Modified Protocol (Take 2)

- **Special soundness:** Given $A \cdot \gamma_j = \beta_j \cdot t + \alpha_j$ and $A \cdot \gamma'_j =$ $\overline{\beta'_j\cdot t+\alpha_j}$ with $\beta_j\neq\beta'_j$, extract $\mathbf{s}=(\boldsymbol{\gamma}_j-\boldsymbol{\gamma}'_j)\cdot(\beta_j-\beta'_j)^{-1}$ • The elements of $\gamma_j - \gamma'_j$ are in { $-mk, ... m k$ }, and $\beta_j - \beta'_j$ is in $\{-1,1\}$, so \bm{s} also lies in $\{-mk,\dots,mk\}$
- **HVZK:** Yes, as now γ _i never depends on s
	- **Caveat:** What is α_i in case of **abort**?

Modified Protocol (Take 3)

- The verifier checks the above $\forall j = 1, ..., k$ and that the coefficients of each γ_i are **small** (i.e., in $\{0, ..., mk\}$)
- But now it also **additionally checks** that

$$
\alpha = \mathbf{H}(A \cdot \boldsymbol{\gamma}_1 - \beta_1 \cdot \boldsymbol{t}, \ldots, A \cdot \boldsymbol{\gamma}_k - \beta_k \cdot \boldsymbol{t})
$$

• In case of **abort**, the HVZK simulator can still send a **random**

In Practice

- The previous protocol still needs to be **repeated in parallel** $k =$ 128 or 256 times
	- And this is the best one can get for **arbitrary** lattices
- However:
	- The proof size for **one equation** is roughly the same as the proof size for **many equations** (amortization with **logarithmic** growth)
	- Working with **polynomial rings** instead of \mathbb{Z}_q allows for **one-shot approximate** proofs (i.e., the coefficients of **s** are **small**)
	- Using more **complex techniques**, one obtains **almost one-shot exact** proofs (i.e., the coefficients of s are in $\{0,1\}$)

Crystals-Kyber

Regev PKE [Reg05]

- **Key Generation:** $pk = (A, b)$ and $sk = s$, where $b^t = s^t \cdot A + e^t$ and $\overline{s} \in \mathbb{Z}_q^n$, $A \in \mathbb{Z}_q^{n \times m}$
- **Encryption:** The encryption of x w.r.t. pk is made of two parts
	- Ciphertext preamble $c_0 = A \cdot r$ for random $r \in \{0,1\}^m$
	- Ciphertext payload $c_1 = b^t \cdot r + x \cdot q/2$
	- Bob outputs $c_1 s^t \cdot c_0 \approx x \cdot q/2$
- **Security:** By LWE we can switch (A, b) with (A, b) for uniformly random h^t
	- By the **leftover hash lemma**, we can finally replace c_0 with uniformly random c_0 , so that c_1 hides x **information theoretically**

Dual Regev [GPV08]

- **Key Generation:** $pk = (A, u)$ and $sk = r$, where $u = A \cdot r$ and $r \in$ $\overline{\{0,1\}^m$, $A\in\mathbb{Z}_q^{n\times m}$
- **Encryption:** The encryption of x w.r.t. pk is made of two parts
	- Ciphertext preamble $\boldsymbol{c}_0 = \boldsymbol{b}^\text{t} = \boldsymbol{s}^\text{t} \cdot \boldsymbol{A} + \boldsymbol{e}^\text{t}$ for random $\boldsymbol{s} \in \mathbb{Z}_q^n$
	- Ciphertext payload $c_1 = s^t \cdot u + e' + x \cdot q/2$
	- Bob outputs $c_1 c_0 \cdot r \approx x \cdot q/2$
- **Security:** By the leftover hash lemma, we can switch **u** with **uniformly random**
	- By LWE we can switch (c_0, c_1) with **uniformly random** (c_0, c_1)

Primal versus Dual

- Public key
	- Primal: pk is **pseudorandom** with **unique** sk
	- \bullet Dual: pk is statistically random with many possible sk
- Ciphertext
	- Primal: A fresh LWE sample with **many possible** coins
	- Dual: Multiple LWE samples with **unique** coins
- Security
	- Primal: Encrypting with **uniform** pk induces **random** ciphertext
	- Dual: By LWE can switch the ciphertext to **random**
- Efficiency: The matrix A can be **shared** by different users

Most Efficient [LP11]

- **Key Generation:** $pk = (A, u)$ and $sk = s$, where $u^t = s^t \cdot A + e^t$ and $\boldsymbol{s} \in \chi^n$, $A \in \mathbb{Z}_q^{n \times n}$
- **Encryption:** The encryption of x w.r.t. pk is made of two parts
	- Ciphertext preamble $c_0 = A \cdot r + e'$ for $r \in \chi^n$
	- Ciphertext payload $c_1 = u^t \cdot r + e' + x \cdot q/2$
	- Bob outputs $c_1 s^t \cdot c_0 \approx x \cdot q/2$
- **Security:** By LWE we can switch (A, u) with (A, u) for uniformly **random**
	- This requires LWE with secrets from the **error distribution**
	- Next, we can replace (c_0, c_1) with **uniformly random** (c_0, c_1)

Fujisaki-Okamoto Transform

- The **FO transform** [FO99,FO13] turns **passively** (**IND-CPA**) secure PKE schemes into **actively** (**IND-CCA**) secure ones
	- The transformation requires two **hash functions** (random oracles)
	- The obtained scheme is better understood as a **key encapsulation mechanism** (KEM)

• We can combine a **KEM** with an **SKE** scheme to get a **PKE** scheme

One-Wayness of PKE

- **OW-CPA:** PKE makes it **hard to guess** the message
	- The message is **uniformly random** and **unknown** to the attacker
- **OW-PCA:** As before but now the attacker can query a **plaintextchecking oracle** which allows to check if $\text{Dec}(sk, c) = m$

Modularization of the FO Transform

- We can view FO as the **concatenation** of **two transforms U** \circ **T**
	- The first transformation takes care of **derandomization** and allows to go from **IND-CPA** to **OW-PCA**
	- The second transformation takes care of **hashing** and allows to go from **OW-PCA** to **IND-CCA**

Transformation T: From IND-CPA to OW-PCA

- Encryption becomes **deterministic** (the **randomness** is $G(m)$)
- Decryption **re-encrypts** m' using randomness $G(m')$ and outputs m' if and only if it obtains c
- **Theorem [HKK17]:** Assuming (Enc, Dec) is IND-CPA (OW-CPA), Enc', Dec') is OW-PCA

Transformation **U**: From OW-PCA to IND-CCA

- Encapsulation outputs $k = H(c, m)$ and c
- Decapsulation obtains $m' = \textbf{Dec}(sk, c)$ and outputs m' • Here, m' could be ⊥ (**explicit rejection**)
- Theorem [HKK17]: Assuming (Enc', Dec') is OW-PCA, (Encaps, Decaps) is **IND-CCA**

Advanced Cryptographic Applications

Computing over Encrypted Data

- Can we have a (public-key) encryption scheme which allows to run **computations** over **encrypted data**?
- Question dating back to the late 70s
	- Ron Rivest and "privacy homomorphisms"
- Partial solutions known
	- E.g., RSA and Elgamal enjoy limited forms of homomorphism
- First solution by Craig Gentry after 30 years
	- The "Swiss Army knife of cryptography"

Motivation: Outsourcing of Computation

- Email, web search, navigation, social networking, …
- What about **private** x?

Outsourcing of Computation - Privately

Wish: Homomorphic **evaluation** function: Eval: pk , f, $\text{Enc}(pk, x) \rightarrow \text{Enc}(pk, f(x))$

Fully-Homomorphic Encryption (FHE)

A Paradox (and its Resolution)

- But remember that encryption is **randomized**!
- Output of **Eval** will look as a fresh and random ciphertext

Trivial FHE?

- Let (KGen, Enc, Dec) be any PKE scheme
- Define the following **fully-homomorphic** PKE $(KGen, Enc, eval', Dec')$:
	- Eval' $(pk, \Gamma, c) = (\Gamma, c)$
	- $\mathbf{Dec}'(sk, c) = \Gamma(\mathbf{Dec}(sk, c))$

Wish: Complexity of decryption **much less** than running the circuit from scratch

The Gentry-Sahai-Waters FHE Scheme

- In what follows we will present the FHE scheme due to:
	- C. Gentry, A. Sahai, B. Waters: "Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based." CRYPTO 2013
- Based on the **Learning with Errors (LWE)** assumption
- Only achieves **levelled homomorphism**
	- But can be **bootstrapped** to **full homomorphism** using a trick by Gentry (under additional assumptions)
- Plaintext space will be $\mathbb{Z}_q = [-q/2, q/2)$, for a large prime q
	- For simplicity let us write $[a]_q$ for a mod q

Eigenvectors Method (Basic Idea)

- Let C_1 and C_2 be matrices for **eigenvector** \vec{s} , and **eigenvalues** x_1, x_2 (i.e., $\vec{s} \times C_i = x_i \cdot \vec{s}$)
	- $C_1 + C_2$ has eigenvalue $x_1 + x_2$ w.r.t. \vec{s}
	- $C_1\times C_2$ has eigenvalue $x_1\cdot x_2$ w.r.t. \vec{s}
- Idea: Let C be the ciphertext, \vec{s} be the secret key and x be the plaintext (say over \mathbb{Z}_q)
	- Homomorphism for **addition/multiplication**
	- But **insecure**: Easy to compute eigenvalues

Approximate Eigenvectors (1/2)

- Approximate variant: $\vec{s} \times C = x \cdot \vec{s} + \vec{e} \approx x \cdot \vec{s}$
	- Decryption works as long as $\|\vec{e}\|_{\infty} \ll q$

$$
\vec{s} \times C_1 = x_1 \cdot \vec{s} + \vec{e}_1 \qquad \vec{s} \times C_2 = x_2 \cdot \vec{s} + \vec{e}_2
$$

$$
\|\vec{e}_1\|_{\infty} \ll q \qquad \|\vec{e}_2\|_{\infty} \ll q
$$

• Goal: Define **homomorphic** operations

$$
C_{add} = C_1 + C_2:
$$

\n
$$
\vec{s} \times (C_1 + C_2) = \vec{s} \times C_1 + \vec{s} \times C_2
$$

\n
$$
= x_1 \cdot \vec{s} + \vec{e}_1 + x_2 \cdot \vec{s} + \vec{e}_2
$$

\n
$$
= (x_1 + x_2) \cdot \vec{s} + (\vec{e}_1 + \vec{e}_2)
$$

\n
$$
(x_1 + x_2) \cdot \vec{s} + (\vec{e}_1 + \vec{e}_2)
$$

Approximate Eigenvectors (2/2)

- Approximate variant: $\vec{s} \times C = x \cdot \vec{s} + \vec{e} \approx x \cdot \vec{s}$
	- Decryption works as long as $\|\vec{e}\|_{\infty} \ll q$

$$
\vec{s} \times C_1 = x_1 \cdot \vec{s} + \vec{e}_1 \qquad \vec{s} \times C_2 = x_2 \cdot \vec{s} + \vec{e}_2
$$

$$
\|\vec{e}_1\|_{\infty} \ll q \qquad \|\vec{e}_2\|_{\infty} \ll q
$$

• Goal: Define **homomorphic** operations

$$
C_{\text{mult}} = C_1 \times C_2:
$$

\n
$$
\vec{s} \times (C_1 \times C_2) = (x_1 \cdot \vec{s} + \vec{e}_1) \times C_2
$$

\n
$$
= x_1 \cdot (x_2 \cdot \vec{s} + \vec{e}_2) + \vec{e}_1 \times C_2
$$

\n
$$
= x_1 \cdot x_2 \cdot \vec{s} + (x_1 \cdot \vec{e}_2 + \vec{e}_1 \times C_2)
$$

\n**Small!**
\n**Small!**
\n**5**

Shrinking Gadgets

• Write entries in C using **binary decomposition**; e.g. $\sqrt{0}$ 11

$$
C = \begin{bmatrix} 3 & 5 \\ 1 & 4 \end{bmatrix} \text{ (mod 8)} \xrightarrow{\text{yields}} \text{bits}(C) = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} \text{ (mod 8)}
$$
\nverse operation:

• **Reverse** operation:

$$
C = G \times G^{-1}(C) = \begin{bmatrix} 2^{N-1} & \dots & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 0 & 2^{N-1} & \dots & 2 & 1 \end{bmatrix} \times \text{bits}(C)
$$

\n
$$
\Rightarrow \vec{s} \times C = \vec{s} \times G \times G^{-1}(C)
$$

LWE – Rearranging Notation

Regev PKE – Pictorially

The GSW Scheme

The GSW Scheme – Homomorphism

$$
\frac{\text{Invariant: } \vec{s} \times C = \vec{e} + x \cdot \vec{s} \times G}{C_{\text{mult}} = C_1 \times G^{-1}(C_2)}
$$

$$
\begin{aligned}\n\vec{s} \times C_1 \times G^{-1}(C_2) &= (\vec{e}_1 + x_1 \cdot \vec{s} \times G) \cdot G^{-1}(C_2) \\
&= \vec{e}_1 \times G^{-1}(C_2) + x_1 \cdot \vec{s} \times G \times G^{-1}(C_2) \\
&= \vec{e}_1 \times G^{-1}(C_2) + x_1 \cdot \vec{s} \times C_2 \\
&= \vec{e}_1 \times G^{-1}(C_2) + x_1 \cdot (\vec{e}_2 + x_2 \cdot \vec{s} \times G) \\
&= (\vec{e}_1 \times G^{-1}(C_2) + x_1 \cdot \vec{e}_2) + x_1 x_2 \cdot \vec{s} \times G \\
&= \vec{e}_{\text{mult}} + x_1 x_2 \cdot \vec{s} \times G\n\end{aligned}
$$

$\vec{e}_{\text{mult}} \|_{\infty} \leq N \cdot \|\vec{e}_1\|_{\infty} + \|\vec{e}_2\|_{\infty} \leq (N+1) \cdot \max\{\|\vec{e}_1\|, \|\vec{e}_2\|\}$

The GSW Scheme – Correctness

The GSW Scheme – Semantic Security

- Similar as in the proof of Regev PKE
- Using LWE we move to a **mental experiment** with $A \leftarrow_{\$} \mathbb{Z}_q^{n \times m}$
- Hence, by the **leftover hash lemma**, with $m = \Theta(n \log q)$, the statistical distance between $(A, A\times\vec{r})$ and uniform is negligible
	- By a **hybrid argument** over the columns of R , it follows that the statistical distance between $(A, A \times R)$ and uniform is also negligible
	- Thus, the ciphertext **statistically hides** the plaintext

The GSW Scheme – Parameters

- **Correctness** requires $n \cdot m \cdot (N+1)^{\tau+1} < q/4$
- **Security** requires $m = \Theta(n \log q)$, e.g. $m \ge 1 + 2n(2 + \log q)$
- Hardness of LWE requires $q \leq 2^{n^{\epsilon}}$ for $\epsilon < 1$
	- Substituting we get $q > (2n \log q)^{\tau+3}$
	- And thus $n^{\epsilon} > (\tau + 3)(\log n + \log \log q + 1)$ which for large τ , n yields $n^{\epsilon} > 2\tau \log n$
	- So we set $n = \max(\lambda, \left[4\tau/\epsilon \log \tau^{1/\epsilon}\right])$, $q = \left[2^{n^{\epsilon}}\right]$, $m = O(n^{1+\epsilon})$, and $\alpha = n/q = n \cdot 2^{-n^{\epsilon}}$
- Hence, the size of ciphertexts is polynomial in λ , τ thus yielding a **weakly-compact** FHE

Increasing the Homomorphic Capacity

- The only way to increase the homomorphic capacity of GSW is to pick **larger parameters**
- This dependence can be **broken** using a trick by Gentry
- Main idea: Do a few operations, then **switch keys**

How to Switch Keys

Circular Security

- The above scheme is **compact**, but **not fully homomorphic**, as we need a pair of keys **for each level** in the circuit
- A natural idea is to use a **single pair** (pk, sk) and include in pk' a ciphertext $\vec{c}^* \leftarrow_{\$} \textbf{Enc}(pk, sk)$
	- Correctness still holds for this variant, but the reduction to **semantic security breaks**
- Workaround: Assume **circular security**
	- I.e., $\text{Enc}(pk, 0) \approx_c \text{Enc}(pk, 1)$ even given $\vec{c}^* \leftarrow_s \text{Enc}(pk, sk)$
	- GSW is **conjectured** to have this property, but no proof of this fact is currently known

Identity-Based Encryption

• **Postulated** by Shamir in 1984 [Sha84]

- Avoids the need of **certificates**
- Introduces the so-called **key escrow** problem
- First **realization** by Boneh and Franklin in 2001 [BF01]

Selective Security of IBE

 mpk, msk , random b

 $c \leftarrow \text{Enc}(ID^*, x_b)$

- Every **selectively** secure IBE is also **fully** secure with an **exponential** loss in the parameters
	- Also, general **transformations** are known

Warm-up Construction [CHKP10]

- **Public parameters:** $mpk = (A_0, A_1^0, A_1^1, A_2^0, A_2^1, u)$
	- Assume, for simplicity, $|ID| = 2$

• **Master secret key:** Trapdoor for A_0

- Secret key for identity $ID = 01$: **Short vector s** s.t. $\mathbf{F}_{01} \cdot \mathbf{s} = \mathbf{u} \bmod q$, where $\bm{F}_{01} = [\bm{A}_0 | \bm{A}_1^0 | \bm{A}_2^1]$
- Note: A trapdoor for A_0 **implies** a trapdoor for F_{01}
- **Encryption: Dual** Regev encryption of x w.r.t. matrix F_{01}
	- The ciphertext is $c_0^t = r^t \cdot F_{01} + e^t$ and $c_1 = r^t \cdot u + e' + x \cdot q/2$
	- Bob outputs $c_1 c_0^t \cdot s \approx x \cdot q/2$

Simulation

- Assume the **challenge** identity is $ID^* = 11$
	- The reduction **can't know** the secret key for ID^*
- Choose A_0 , A_1^1 , A_2^1 uniformly at **random**, but sample A_1^0 , A_2^0 with the corresponding **trapdoors**
- The reduction can derive trapdoors for $\mathbf{F}_{00} = [A_0 | A_1^0 | A_2^0]$, $F_{01} = [A_0 | A_1^0 | A_2^1]$, and $F_{10} = [A_0 | A_1^1 | A_2^0]$ but not for $F_{11} = [A_0 | A_1^{\dagger} | A_2^{\dagger}]$
	- This allows the reduction to **simulate** key extraction queries while **embedding** the LWE challenge in the simulation

A More Efficient Construction [ABB10]

- **Public parameters:** $mpk = (A_0, A_1, G, u)$
- **Master secret key:** Trapdoor for A_0
	- Secret key for identity ID : **Short vector** s s.t. $F_{ID} \cdot s = u \bmod q$, where $\boldsymbol{F}_{ID} = [A_0 | A_1 + ID \cdot G]$
	- As before, a trapdoor for A_0 **implies** a trapdoor for F_{ID}
- **Encryption: Dual** Regev encryption of x w.r.t. matrix \boldsymbol{F}_{ID}
	- The ciphertext is $c_0^t = r^t \cdot F_{ID} + e^t$ and $c_1 = r^t \cdot u + e' + x \cdot q/2$
	- Bob outputs $c_1 c_0^t \cdot s = r^t \cdot u + e' + x \cdot q/2 r^t \cdot F_{ID} \cdot s + e^t \cdot$ $s = r^t \cdot u + e^{t} + x \cdot q/2 - r^t \cdot u + e^{t} \cdot s \approx x \cdot q/2$

Simulation Revisited

- Assume the **challenge** identity is ID^*
	- The reduction **can't know** the secret key for ID^*
- The reduction does **not** know a trapdoor for A_0 , but it knows a trapdoor for the gadget matrix \boldsymbol{G}
- Let $A_1 = [A_0 \cdot R ID^* \cdot G]$, where R is random and low-norm
	- This is **indistinguishable** from the real A_1
- Note that $\mathbf{F}_{ID} = [A_0 | A_0 \cdot \mathbf{R} + (ID ID^*) \cdot \mathbf{G}]$
	- Using the technique of [MP12], we can **derive** a trapdoor for \mathbf{F}_{ID} given a trapdoor for A_0
	- This allows to **simulate** key extraction queries for all $ID \neq ID^*$
	- The LWE challenge can be **embedded** as before

Inner-product Encryption [KSW08]

- Decryption reveals x **if and only if** $\langle a, b \rangle = 0$
	- Here, we can also be interested in **attributes privacy**
- Can be used to obtain **predicate encryption** for polynomial evaluation, CNFs/DNFs of bounded degree, and **fuzzy** IBE

Generalizing to Inner Products [AFV11]

- **Public parameters:** $mpk = (A, A_1, ..., A_k, G, u)$
- **Master secret key:** Trapdoor for A
	- Secret key for b: **Short vector** s_h s.t. $\mathbf{F}_h \cdot s_h = u \bmod q$, where $\mathbf{F}_h =$ $[A | \sum_i b_i \cdot A_i]$
- **Encryption: Dual** Regev encryption of x w.r.t. matrix A
	- The ciphertext is $c_0^t = r^t \cdot A + e^t$, $c' = r^t \cdot u + e' + x \cdot q/2$, and $c_i^t =$ $r^{\mathrm{t}}\cdot (A_i\!+\!a_i\cdot\boldsymbol{G})+e_i^{\mathrm{t}}$ (so it indeed hides $\boldsymbol{a})$
	- Bob sets $c_b = \sum_i b_i \cdot c_i = r^t \cdot (\sum_i b_i \cdot A_i + \sum_i a_i \cdot b_i \cdot G) + \sum_i b_i \cdot e_i$ which equals $r^t \cdot \sum_i b_i \cdot A_i + \sum_i b_i \cdot e_i$
	- Hence, $[c_0|c_b] \approx r^t \cdot [A|\sum_i b_i \cdot A_i]$ is a dual Regev ciphertext
	- Bob outputs $c' c_0^t \cdot s_b c_b^t \cdot s_b \approx x \cdot q/2$

Attribute-based Encryption [SW04]

- Decryption reveals x **if and only if** $f(\boldsymbol{a}) = 0$
	- Here, we are not interested in **attributes privacy**
- Plenty of applications for **privacy-preserving data mining** and in cryptography for **big data**

Handling Multiplications [BGG+14]

- Let $c_1^t = r^t \cdot (A_1 + a_1 \cdot G) + e_1^t$ and $c_2^t = r^t \cdot (A_2 + a_2 \cdot G) + e_2^t$
- Want: $c_{12}^t = r^t \cdot (A_{12} + a_1 \cdot a_2 \cdot G) + e_{12}^t$
	- Compute $(A_1 + a_1 \cdot G) \cdot G^{-1}(-A_2) = A_1 \cdot G^{-1}(-A_2) a_1 \cdot A_2$
	- Compute $(A_2+a_3\cdot G)\cdot a_1 = a_1\cdot A_2 + a_1\cdot a_2\cdot G$
	- The **difference** is $A_{12} + a_1 \cdot a_2 \cdot G$
- So, we let $c_{12}^t = c_1^t \cdot G^{-1}(-A_2) + c_2^t \cdot a_1$
	- $G^{-1}(-A_2)$ and a_1 are **small** and **do not effect noise**
	- As usual, additionally let $c_0^t = r^t \cdot A + e^t$, $c' = r^t \cdot u + e' + x \cdot q/2$
	- If $a_1 \cdot a_2 = 0$, then $[c_0 | c_{12}] \approx r^{\dagger} \cdot [A | A_{12}]$
	- The secret key is a **short vector** s_{12} s.t. $[A|A_{12}] \cdot s_{12} = u \bmod q$
	- Bob outputs $c' c_0^t \cdot s_{12} c_{12}^t \cdot s_{12} \approx x \cdot q/2$

