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Data Exploitation

X — (xl, X9, )

Dataset

* Availability of lots of data

— Social networks, financial data, medical records...

e All these data are an asset

— We would like to exploit them
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Applications

* Finding statistical correlations
— Genotype/phenotype association

— Correlating medical outcomes with risk factors
* Publishing aggregate statistics
* Noticing events/outliers

— Intrusion detection
* Datamining/learning

— Update strategies based on customers data
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Data Analysis and Privacy

Dataset x Data Analyst

* How to define privacy?

— Intuitively we want that published statistics do not
undermine privacy of the individuals

— After all statistics are just aggregated data about
the overall population
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The Statistics Masquerade

e Differential attack

— How many people in the room XYZ last night?

— How many people, other than the speaker, XYZ
last night?

* Needle in a haystack

— Determine presence of an individual genomic data
in GWAS case group based on aggregate stats

* The big bang attack

— Reconstruct sensitive attributes given statistics
from multiple overlapping datasets
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NYC Taxicab Data

 2014: NYC Taxi & Limo Commission sharing
visualization on taxi usage statistics on twitter

— Chris Whong filed a FOIL request and released the
dataset publicly online

— 19 GB with all taxi fares and statistics in 2013

e Attempt to anonymize the data

6B111958A39B24140C973B262EA9FEAS,
D3B035A03C8A34DA17488129DA581EE7, ...

— Someone discovered those were the MD5 hash of
the driver’s medallion and license number
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The Netflix Prize

e 2006-2009: 1M USD for improving the
recommendation engine

* Anonymized dataset including movie id, user
id, rating and date

* The dataset was de-anonymized by combining
it with the public IMDB dataset

— Matching users that gave similar preferences
— A class action lawsuite was filed against Netflix
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Lessons to be Learned

* Privacy is a concern when publishing datasets
* Wait: This does not apply to me!

— Don’t make the entire dataset available

— Only publish aggregate statistics

* Even if only data aggregations are published
privacy can be broken

* Overly accurate estimates of too many
statistics is blatantly non-private
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Privacy-Preserving Data Analysis?

Data Analyst

e Can’t Iearn anything new about Alice?

— Reminiscent of semantic security for encryption

* |deally: Learn same thing if Alice is replaced
by a random member of the population

| | %4 CIS SAPIENZA
Data Privacy and Security ﬁ‘ —

Differential Privacy 10



Differential Privacy

* QOutcome of analysis is roughly equally likely

— Independent of whether any individual joins, or
refrains from joining, the dataset

— Alice goes away, Bob joins, Alice replaced by Bob
— Small perturbations do not matter

* Note that instead if we completely change the
dataset we get completely different answers!

* Adopted in real-world applications by Apple,
Google and Microsoft
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More Formally...

Data Analyst

s Definition: Mechanism M: X" XQ — U gives &- )
differential privacy if for all pairs of adjacent datasets
x,x € X™, and for all queries g € Q:

_ YETY,PMxq)=y]<e® - PMx,q)=y] )
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Notes on the Definition

e All that an adversary learns about you, it could
have learned from the rest of the dataset

— Even if you don't participate

— This doesn't mean nothing about you is leaked

— Can't use DP to take actions on specific individuals
* Worst-case guarantee

— For all datasets, against unbounded adversaries

* Probability over the randomness of the
algorithm, not over the choice of the dataset
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Counting Queries

* Simply a predicate on rows q: X — {0,1}
— Can be extended to datasets X" by counting the
fraction of people satisfying the predicate, i.e.

1 n
{ q(x)=,r—lzi=1q(xi) J

* Point functions: 9, (X) = {qy }yex s.t.
q,(w) =1liffw=y

— Answering all queries in @, (X)) amounts to
computing the histogram of the dataset
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Counting Queries

* Threshold functions: Q. (X) = {qy }yex S-t.
q,(w) = 1iffw < y (with X totally ordered)

— Answering all queries in Q,(X) amounts to the
cumulative distribution function of the dataset

* Attribute means: Qpcans(d) = {q;}je[a S-t-
q;(w) = w;, wherew € X = {0,1}“
— Answering all queries in Q. eans(d) amounts to

computing the fraction of the dataset possessing
each of the d attributes (1-way marginal statistics)
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Counting Queries

» Conjunctions: Q¢,,i(d) with all conjunctions
of t € [0,d] literals on X = {0,1}¢
—E.g., Q(z:on]-(S) contains g(w) = wy,A—w, (what

fraction of individual in the dataset have lug
cancer and are non-smokers?)

— These are called t-way marginal

— Answering all queries in Q¢,,;(d) amounts to

computing the t-way contingency table
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Postprocessing

* Theorem: If M: X" XQ — Y is e-DP, and
Y: Y — Z is any randomized function, then
YoM: X"XQ - Zis e-DP

e Let W be a distribution on deterministic
W:Y »> Z.Foranyz € &

P[(¥ o M)(x) = Z]

= Eyp[P[M(x) =9~ (2)]]

< Eycyle® - P[M(x") =9~ (2)]]
=e® - P[(WoM)(x) = z]

N
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Group Privacy

* Theorem: If M is &-DP, then for all pairs of
datasets x,x' € X™, M(x) and M(x') are ke-
DP for k = d(x, x")

— Here, d(x, x") is the number of rows that need to
be changed to go from x to x’

— Let x;,1 be obtained from x; by changing one row

P[M(xo) = y] <e®-P[M(x1) = y]
<ef-(ef-P[M(x;) =y])

< e**- P[M(x;) = y]
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Basic Composition

* Theorem: If My, ..., M, are €-DP, then M s.t.
M(x) = (M;(x), ..., M (x)) is ke-DP

* Fixx~x'. Fory € Y, define

e PM(x) = y]\
A X X/ ( ) = 1 ( 4 )
B2 )=\ PM(x) = ] )

— When Ameomen (YY) > 0, the outcome y is
"evidence" that the dataset is x rather than x'

— Thus, e-DP means that for all x~x’, and for all y,
Ameomen )| < €
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Basic Composition

* |n our case:

Ameomen V)

In ( P[M;(x) =y A . AMg (%) = yi] )
P[M;(x") = yin .. AMg (X)) = yy ]

In ( =1 P[M;(x) = 3’i]>
. éc=1 P[Mi(x’) = yi]
Zi=1AMi(x)||Mi(x’) (yi)

k
= |Ameimen ()] < zizl\AMiu)nMi(xr)(yiﬂ < ke
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Summary of Properties

* Immune to auxiliary information
— Current and future side information

e Automatically yields group privacy
— Privacy loss ke for groups of size k

* Composition

— Can bound cumulative privacy loss over multiple
analysis (the epsilons add up)

— Can combine a few differentially private
mechanisms to solve complex analytical tasks
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Did You XYZ Last Night?

* Flip a coin
— If heads, flip again and return YES if heads, and
else return NO

— If tails, answer honestly
P[YES|Truth=YES] _ 1/2+1/2:(1/2+0) _

P[YES|Truth=NO] 0+1/2-(1/2)
. PINO|Truth=NO] p = fraction of
P[NO|Truth=YES] people that XYZ

= 2(#YES) — 1/4

e Gives e-DPfore =1In3 =~ 1.098
» Expected #YES:1/4 (1 —p) +3/4p
N\ )
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Randomized Response: Privacy

* Let q: X — {0,1} be a counting query
* For each row x;, let M(x;) = q(x;) w.p.
1/2 + € and M(x;) = q(x;) w.p. 1/2 — ¢
* Consider M(x) = M(x1, ..., X)) = (V1) o0r Vi)
— Assume x~x' differ only in the j-th row
PM(x) =y] [I;P[M(x;) =y;
IP[M(x') =y] [1; P_M(x{) =y;
P[M(x;) =y, - 1/2 + ¢
IP_M(xj) =y;| " 1/2-¢
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Randomized Response: Accuracy

* The latter is < e%(®) when, say, ¢ < 1/4 and
thus the mechanism M has O(¢)-DP

e As for accuracy, note that
—Elyl=@/2+¢&)-q(x) + (1/2—¢) -
(1—q(x)) =2e-q(x) +1/2—¢
—Thus, q(x;) = 1/(2¢) - E[(y; — 1/2 + €)]

* This suggests the following estimator.
s E[J] = q(x)

N
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Randomized Response: Accuracy

* Next, we analyze the variance

~ (1 1
- V¥l =V |21 |5 (yl—1/2+€)“ vl
- 1 1 1
?=1V[Yi' = 4g2n2 n: 4 — 16€2n

— Finally, by Chebyshev’s inequality

{I?—yISO(\/ﬁl.g) J

— As n — oo, we get an increasingly accurate
estimate of the result
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Data Privacy and Security va// |

Differential Privacy 25



Differential Privacy by Adding Noise

* Let g be a counting query

* Answer with M(x) = g(x) + noise

— But according to which distribution?
* Note that if x~x', then |g(x) — g(x")| < 1/n
* At every y, the density of output distribution

should be same for x, x’ up to a factor e

— Density of M(x) (resp. M(x")) at y is that of the
noiseatz =y — q(x) (resp.z =y — q(x'))
— Again, |z—Z'| < 1/n
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Laplace Mechanism: Privacy

e Let L(u,0) atzbe 1/(20) -e1z7H#l/0
* Ifwesetu=0,0 =1/¢en, we have:

P[M(x) = y]
PM(x') = y]

ly—q(x")|-1ly—q(x)|
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Laplace Distribution
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Laplace Mechanism: Accuracy

* Note that L(0, o) has mean 0 and standard

deviation V20, and exponentially vanishing
tails: P[|L(0,0)| > ot] <e”*

* Hence, forany0 < f < 1:

Pllg@) —y| > In(1/B) - 1/(em)] < B

* With high probability we get error 0(1/(en))

— Compare this with accuracy 0(1/&+/n) of
randomized responses
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Laplace Mechanism: Multivariate Case

* Not specific to counting queries
— All we used is that |g(x) — g(x)| < 1/n for x~x'

* For arbitrary g: X™ — R% scale the noise to
global £, -sensitivity

n
[ A= max||qg(x) — q(xX)]|l; = z lyi — vl J
xX~Xx/I =1

I

* Theorem: Let g: X™ — R% . The mechanism
M(x) = q(x) + (24, ..., Z3) where each z; «
L(0,A,/¢) satisfies e-DP
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Approximate Differential Privacy

Data Analyst

" Definition: Mechanism M: X"XQ — Y gives (g,6)- A
differential privacy if for all pairs of adjacent datasets
x,x € X™, and for all queries g € Q:

Y EY,PIM(x,q) =y] <e®-PIM(x",q) =yl +§ )
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Benefits of the Relaxation

* Gaussian noise
— Leading to better accuracy

 Advanced composition

— Can answer k gueries with cumulative loss Vk - €
— Instead of ke as in pure differential privacy

e Can use cryptography to simulate trusted
center (see a later lecture)
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Gaussian Distribution
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Gaussian Mechanism

* Let g: X™ — R%. The global #,-sensitivity is:

b= e -0l = Y [ |

* Theorem: Let g: X™ — R% . The mechanism
M(x) = q(x) + (z4, ..., Z3) where each

A2
z;~N (O, 2In125/9) Az) satisfies (g, 5)-DP

c2
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Gaussian versus Laplace

* Note that for every vector y € R%, ||y]|, <

Iyl < Vd - lyll,

* Suppose that x € {0,1}**% and take the query

1 L
q(x) = ~- *_, x; for the multivariate mean

— Here, A;< d/n and A, < Vd/n

— The Laplace mechanism would add noise of
magnitude O(d/ne) whereas the Gaussian

mechanism needs less noise 0(\/d -In(1/6)/ne)
for roughly the same accuracy
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Gaussian Mechanism: Privacy

* We first show that for M(x) = q(x) + z
where z < N(0,c? - I ) the privacy loss is

_ N 112 _ N
distributed as N (IIQ(x) q@Nlz llg(x)—q(x )Ilz)

202 ’ o2
ln(lP[M(x) = q(x) + Z]) _ ln( exp(—||zll3/202) )
P[M(x") = q(x) + z] exp(—|lz + v|[5/20?)

1 2 2
= 552 (lzllz = [z + v]|3)

oz (X (-G w)))
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Gaussian Mechanism: Privacy

 Fact:a-N(0,1) + b -N(0,1)~N(0, a? + b?)
* Simplifying, we get:

P[M(x) =q(x)+z]\ 1 d ,
n (P[M(x’) — 4 z]> =207 (Z PSR )>
lv]|3

- and matches the mean

— The constant term is

— The other term is — Z] zjv; =%z = Z', where

2
z;~N(0, g’ - v; 2y and z'~N (O, IIvIIZ)

o2
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Gaussian Mechanism: Privacy

* To finish the proof, we need to show that the
privacy loss is < € with probability =1 — 0

* ForZ~N(0,1)and o = A, - t/¢&, we can write:

P”uqoo—q(x’)uz.~ laG) - g2

20 2072 |
T 0 _||q<x)—q<x'>||2‘
=Pl = e, 20

<P[iz >t -]
Z — —
i U T

— For simplicity we drop the small term ¢/(2t)
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Gaussian Mechanism: Privacy

» By standard tail bounds P[|Z] > t] < et/2

e Ifwesett = \/21n(2/5) we obtain that
P[|Z] = t] < &, which implies (&, §)-DP
* Note that the latter corresponds roughly to

[G ~ %-\/ln(l/S) }
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Properties of Approximate DP

* Post processing: If M: X" XQ — Y is (¢g,)-DP,
and F: Y — Z is any randomized function,
then F o M: X"XQ — Zis (g,6)-DP

* Group privacy: If M is (&, 6)-DP, then for all
pairs of datasets x, x’ € X™, M(x) and M(x")
are (ke, k6 - e k=D€).DP for k = d(x, x")

* Basic composition: If M4, ..., M, are (&, 6)-DP,
then Ms.t. M(x) = (M (x), ..., My (x)) is
(ke, kd)-DP
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Advanced Composition

* Theorem: Forallg, 6,6 > 0, if My, ..., My, are
(g,6)-DP, then M(x) = (M;{(x), ..., My (x)) is
(&, 6)-DP for

4 3_1\
s = £/2k -log(1/6') + ke - -

f © et +1
=Ko +6 )

— In the high-privacy regime, (e*—1)/ (e* + 1) =
£/2 and thus we can ignore the second term in &

— The above holds even if in the adaptive setting
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Reduction to Binary(ish) Mechanisms

* What is the simplest pair of random variables
(U, V) satisfying the definition of (&, 6)-DP?
— |l.e., with probability =1 — 6
< EJ

P|U = v]
{AU”V = |In (IP’[V = v])
_

8(1—6)/(1+e‘9) (1—5)/(1+e‘9)

1 (1-6)/(1 +e?) ec(1—-90)/(1+ e?®)
lam U o) 0
lam V 0 o)
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Reduction to Binary(ish) Mechanisms

* Lemma: Let A and B be s.t. ‘AAHB‘ < € and

‘AB”A‘ < e w.p. 1 —0; there is a randomized
mapping W s.t. W(4)~U and W(B)~V

e 04 CIS SAPIENZA
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Reduction to Binary(ish) Mechanisms

* We can think M; takes as input x € X™ as well
as the transcript 7;_; of previous outputs

e Corollary: There is a randomized mapping ¥*
s.t. M(x) = (M;(x), ..., My (x)) satisfies
—~M(x)~W*(Uy, ..., Up), with Uy, ..., U, ~U
—~ M)~ (Vy, ..., V), with Vy, ..., Vi~V

* By post-processing, it suffices to bound the
privacy loss between Uy, ..., U, and V4, ..., V},
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Composition of Binary(ish) Mechanisms

* Let v; € {0,1,1am U} be the j-th realization
— Thatis, v;~U Call this event E;

— When v; = I am U, privacy is violated, but

P[ij s.t.v; = lam U] =1-(1-86)*<ks
— Next, we condition on E; not happening

Pl(Uy, ..., Ux) = v]\ O P[U; = v
ln([P)[(Vl, v, Vi) = v]) B 2j=1ln(P-V- = )

ko (1=8)e U /(ef+1)
Z]'=1 (1—-56)eVi/(e¢+1) — zj: (1 —2v;)
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Composition of Binary(ish) Mechanisms

* Note that (always conditioning on E;
1w.p.e?/(1+ e®
{— 2y = w.p.e®/( +e€)
J —1w.p.1/(1 + e%)
* Hence, we can compute the expectation
P{(U,,...,U,) = v et —1
E |In [( ! k) ] = ke -
P[(Vy, ..., Vi) = V] et +1
— Finally, we apply the Chernoff bound in order to

prove that the privacy loss does not exceed its
expectation with probability more than §’
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Composition of Binary(ish) Mechanisms
* Hoeffding bound: For X, ..., X i.i.d. and

bounded in the range |a, b|, we have:

k
IP[Z X; = E|X;|+y
j=1

* Define the event that the privacy loss goes too
far from its mean Call this event E,

P[(Uy, ..., U,) = v] et —1
lrl(IP[(Vl, Vi) = v]) > ke - et +1 + peVk

__2y?
S e k(b—a)z

_J
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Composition of Binary(ish) Mechanisms

* By setting [a,b] = [—¢,¢] and y = BeVk

P[E;|E;] < e F*/?
* Putting it all together using f = \/Zln(1/6’)

[(Ul' . Uk) =7V /\E1 /\Ez]
<€8 [(Vl,...,Vk) :U/\El /\Ez]
< ee [(Vl, ...,Vk) — U]
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Composition of Binary(ish) Mechanisms

\ENE Y
[U* =v] =P[U* =vAE{ANE,| + P[U* = v AE]
+ P[U"=vAE; ANE;] SP[U* = v AE; AE;] + P[E|]
+ ]P)[E2|E1]‘P[E1]

<ef PV =v]+ks§+eF/2.1

et PV*=v]|+kS+8 =ef-P[V*=v]+6

~
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Exponential Mechanism

e Until now, we focused on numerical queries
* |[n some situations, we wish to output objects

 Example: Digital auction
— One seller having infinite copies of digital good
— n buyers each with valuation v;
— What’s the price p max. the revenue ;. ., p?

* |dea: Use differential privacy

—Ifv; = v, = 1and v3 = 3.01, the revenue drops
from 3 to 1.01 increasing p from 1 to 1.01
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Exponential Mechanism

 More formally, the mechanism takes as input

— A dataset x € X", a set of objects H and a score
function s: X"XH - R

— Only the dataset is private
* Define the sensitivity of the score function:

L As < max max |s(x, h) — s(x', h)] }

heH x,x":x~xr

* Definition: The exponential mechanism
outputs h € H w.p. < exp(e - s(x, h)/(2As))

. . 04 CIS SAPH NZA
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Exponential Mechanism: Privacy

* Theorem: The exponential mechanism is &-
differentially private

* Fixanyx~x'and h € K
exp(e-s(x,h)/(2As))
P[M(x,3,s) =y]  Xpesexp(e-s(x, h')/(24s))
P[M(x', H,s) = y] exp(e - s(x',h)/(2As))
Dinegr €XP(E - S(g h)/ (ZAE)) Y .
, wen exple-s(x’,h")/(2As
— exp(e ) (S(X, h) _ S(X ) h))/(ZAS)) | Zh’e}[ exp(s . S(x, h’)/(ZAS))
Yner €xp(e/2) - exp(e - s(x, h')/(2As))
e €Xp(e - s(x, h')/(2As))

< exp(e/2) - = exp(¢)
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Exponential Mechanism: Accuracy

* Theorem: Let s*(x) = max s(x,h)and H* be

the set containing all h € H such that
s(x,h) = s*(x). Then:

e @

* Corollary: Since |[H™*| = 1, we get

[ P [S(M(X, H, S)) < s*'(x) — Zgﬂ (In(|FH|) + ,B)] <e B J
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Exponential Mechanism: Accuracy

* By definition:
IP[S(M(x, H, S)) < y]
_ Zners(xnsy EXP(€ - S(x, 1)/ (2A45))

Dnrea €xp(e - s(x, h')/(2As))
_ 131 exp(ey/(285))
— |H*| - exp(es*(x, h)/(2A5))

| H | .
= Tl exp(e(y — s*(x,h))/(24s))

—Sety =s5"(x) — 2As/e - (In(|H|/|H*]) + B)
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Application: Laplace Mechanism

* Letx € X" and ¢: X" = R with sensitivity A
— Set x to be the dataset, R = H be the objects,
and s(x,h) = —|q(x) — h| be the score

[P[M(x, H,s) =h] xexp(e-—|q(x) — h|/(2As))]

— The latter is identical to the Laplace mechanism
up to a factor of 2 (resulting in twice the noise)

— Actually, the factor of 2 can be removed by
revisiting the privacy proof
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Application: Selling Digital Goods

 Example: Digital auction
— One seller having infinite copies of digital good
— n buyers each with valuation v; € [0,1]
— Price p € [0,1] maxim. the revenue p - |i: v; < p|
* We first discretize H = {«, 2«, ..., 1} for some
a,sothat |H| =1/«
— Letting p* = mz?xp iz v; < pl, we get

s*(vyq, ..., V) = p* — an (round down p to the
closest multiple of a, loosing at most an)
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Application: Selling Digital Goods

 Example: Digital auction
— One seller having infinite copies of digital good
— n buyers each with valuation v; € [0,1]
— Price p € [0,1] maxim. the revenue p - |i: v; < p|
* We let s(x,p) be the revenue p - |i: v; < p|
— Since p < 1 and changing an individual only
affects |i:v; < p|byone, As <1
—Thus, s(x,p) isatleastp™ —an —In(1/a)/¢
resulting in p* — In(n)/e when a = In(n) /(ne)
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Application: Private PAC Learning

* Probably approximately correct learning
— Concept class C = {c:{0,1}%- {0,1}}

—n elements (x;, y; = ¢*(x;)) for some (unknown)
c* € C, where x;~D (also unknown)

* Goal: Output ¢ s.t. P,._p|C(x) # c*(x)] is
minimized

 Example: Learning halfspaces

— Classic task in machine learning
— Intractable with noise

N
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Application: Private PAC Learning
 Theorem: If n = Q(log(|C|)/2a?), then there

exists ¢ s.t. P,._p|¢(x) # c*(x)] < a/2

* Get the training data and see how every
function in C classifies the dataset

— Output any function ¢ € C that never errs
* Fixh € C,n = 2t/a*. By a Chernoff bound:

{le,...,xn~D [

i h(x;) = c*(x;)
n

Pyplh(x) = c*(x)] = z5

— Wit

nt = Q(log(]|C])), the above holds Vh € C
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Application: Private PAC Learning

* Turning to differential privacy, for x~x' we
have the change of a single point (x;, y;)

— Worst case: x; may not follow D and y; # c*(x;)

e Theorem: If n = Q(2log(|C])/a?

log(|C|)/(4ac)), then 3 an &-DP algorithm
outputting ¢ s.t. P, _p[¢(x) # c*(x)] < «

* Apply the exponential mechanism
—Set C = 3 and s((x,y),h) = —|i: h(x;) # y;|/n
—So, As = 1/n and S*((x, y)) =0
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Application: Private PAC Learning

* The exponential mechanism guarantees that
we output ¢ such that w.h.p.:

2A 2
s((x,y), 8) > —TS In(I#) = == In(IC]) = —a/2

—Thus |i: h(x;) = y;|/n < a/2
— Putting the two together: P, _p[é(x) # c*(x)] <
a/2+a/2=a«a
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Answering Many Queries

* Assume we are givenaset Q of k = |Q]
qgueries, and we wish to answer all with &-DP
— First add Laplace noise to achieve ¢,-DP
— By basic composition can set &, = £/k so that the
noise per query has scale 0(1/(ggn)) = O(k/en)

* The above implies that we can answer all
gueries in Q with &-DP to within error

Setting f = 1/0 (k)

| aso(th)
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Answering Many Queries

* For (&, 0)-DP, we can use the Gaussian
mechanism and advanced composition to get:

N
klogk -log (1/6
Y < O(J gk -log (1/ >)
N\ it y,
— Thus, we can accurately answer k = o(n)

— However, note that whenever |Q| is larger than
n?, the error is too large

 Next, we show how to answer much more
than n? counting queries
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SmallDB Mechanism

 Theorem: There exists an e-DP mechanism M
such that for all datasets x € X™ w.h.p. M(x)
answers all queries in Q to within error

75 ) Can handle > n?
log |X| - log |Q|) queries

\aSO( - J

* Moreover, M(x) outputs a synthetic dataset
y € X™ withm = 0(log |Q|/a?) s.t. Vq € Q
w.h.p. [q(y) —q(X)| < «a
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SmallDB Mechanism

* Foreachy € X™, let

weight, (y) = exp(—¢n - maxgegl|q(y) — q(x)|)
* Output y w.p. < weight,(y), i.e.

(" )

o weight, (y)
PriM(x) = y] = Y cxm weightx(Z)J

.

— Exponential mechanism with dataset x € X",
objects H = {y € X™:m = 0(log |Q|/a?*)}, and
score function s(x,y) = — mEaQX lg(y) — q(x)]

q
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SmallDB Mechanism: Privacy & Accuracy

e Corollary: The SmallDB mechanism is 2&-DP

— The proof follows directly from the privacy
property of the exponential mechanism
* The accuracy proof is more involved

— First, we show there is at least one good small
datasety € X" s.t. [s(x,y)| <

— Then, we show the exponential mechanism
outputs such a good dataset w.h.p.
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SmallDB Mechanism: Accuracy

* Chernoff bound: For X, ..., X, i.i.d.in |0,1]
and X = Y7L, X; with u = E[X]

[P[X >pu+e]<e M and P[X <y — ] < e~ 2me” ]

* Let y* be a random sample of m rows from x
—Then q(y*) = X272, q(x;) and E[q(y*)] = q(x)

* By the union bound, and invoking the
Chernoff bound with m = 0(log |Q|/a?):

[ Pr[3g € 0s.t.|g(y") — q(x)| > o] < 2|Q| - 272ma’ ]
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SmallDB Mechanism: Accuracy

* By accuracy of the exponential mechanism
with As = 1/n and |H| = |X|leglel/a”

P [S(M(x, H, S))

. 2 (log |X|-log|Q]
SS(X)—Q( 02

=p

+ log (1/ﬁ))

= P[rggglq(y) — q(x)
2 (log | X - log |Q|

>a+—:
EN

+ log (1/,3)) <
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SmallDB Mechanism: Accuracy

* By replacing a with /2 and setting a/2 =

2/(en) - (FE2EE 4 log (1/8))
a a
P|maxla) — g = 5 +5 = a| <5

* Thus, w.p. at least 1 — [ the accuracy is:

N
log | X|:-lo 1/3
aga(gll gmg
9 en y
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The Downside

 The exponential mechanism can be very
expensive

— Need to enumerate overall y € Y

* Computation time is

(YD = a(x|™)

.

= Q(|x|0(log|Q|/a2))
J

~

— Answering all queries in the family Q.qp;(d) with
error tending to zero requiresn = w(d?/¢)

N
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Private Multiplicative Weights

* We now present the state of the art
mechanism for linear queries

— Query g: X = [0,1] instead of q: X — {0,1}
— For a dataset x € X™, gq(x) = % ~1q(x)

e Theorem: There is a mechanism that answers
a set O of linear queries on a dataset with

(g,0)-DP and accuracy Runningtime 0(|9] - |X| - n/a?)
é 1/2 )

log |X]-log 1/6 -1
aSO(Jogl | -log 1/ OgIQI)
_ en D

%4 CI1S SAPIENZA
N e



e So far, we have seen DP mechanisms able to
answer many queries with good accuracy

* Next, we look at lower bounds essentially
telling that these algorithms are optimal
 We will consider both
— Information-theoretic lower bounds

— Computational lower bounds
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Blatant Non-Privacy

* A mechanism M: X™ — U is blatantly non-
private if for every x € X", one can use M(x)

to compute x' € X™ s.t. x and x' differ in at
most n/10 coordinates w.h.p.

— A very weak privacy notion, ruling out attacks
that can reconstruct almost all of the dataset

— Exercise: A mechanism thatis (1,.1)-DP cannot
be blatantly non-private

N
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Reconstruction Attacks

* Let X = {0,1}, so that a dataset of n people is
a vector x € {0,1}"

* Consider normalized inner-product queries
g € {0,1}", with answer (g, x)/n € [0,1]
— Bits of x are attributes of the n members, and g

specifies a subset of the population according to
some demographics

— The value (g, x)/n measures the correlation
between the demographics and the attributes

— Can be transformed into counting queries
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Reconstruction Attacks

* Theorem: If we are given for each g € {0,1}"
avaluey, € Rs.t. ‘yq — (q,x)/n‘ < a, then
we can use the y,'s to compute x’ differing
from x in < 4« fraction of the coordinates

* Corollary: If M(x) outputs y, as above with
a < 1/40, then M is blatantly non-private

— Thus, additive error (1(1) is necessary for
answering all 2" normalized inner-product queries

— This shows that the error in SmallDB is tight

N
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Reconstruction Attacks

* Pick any x’ such that Vq: ‘yq —{(q, x’)/n‘ < a

— At least one x' exists, namely x

* letg; =xandqgy =X

 The Hamming distance between x, x’ is:

[ d(x, 1)

_ Kdo,x) = (g0, ) + gy, %) = (g, x|

n
(qu X) _

T (v

_|_

n

_ (qO' X,>

n

_ (CI1, X’>
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Reconstruction Attacks

* Dinur and Nissim provided a computationally
efficient variant of the above attack

* Theorem [DNO3]: For every mechanism that
answers all normalized inner-product queries
with accuracy O (a+/n), there is an efficient
attacker that reconstructs the dataset in all
but O(a?) positions by asking O(n) queries

— This shows that the Laplace and Gaussian
mechanisms are also tight
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Attacks based on Traitor Tracing

 The smallDB and private multiplicative weight
mechanisms answer > n? queries over {0,1}¢

— As long as n is large compared to d (e.g., n > d?)
e But the computation time is exponential in d

e We now show that the above limitation is
inherent in the worst case
* Proof based on traitor tracing schemes

— Cryptographic tool for preventing piracy of digital
content (using a broadcast channel)
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Traitor Tracing

sk, gﬂ) Encrypted signal
Skz ‘7> han
bk, tk

sk Ef) m = D(sk,,c) ¢ <4 E(bk,m)
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The Tracing Algorithm

a N

Some user in the coalition

can be efficiently traced
(with high probability) using
tracing algorithm T(tk) bie, th
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Stateless vs Stateful Pirates

* Pirate corrupts any set S € [n]| of decoders
and produces a pirate program P

* Stateless pirates

— The pirate program P is given to the tracer
— Useful decryptor: P decrypts honest ciphertexts

e Stateful pirates
— The tracing algorithm can query P on (¢4, ..., cx)

— Cooperativeness: P decrypts honest ciphertexts,
even after receiving malformed ciphertexts
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A Computational Lower Bound

* Theorem: Assuming OWFs, there is a traitor
tracing scheme secure against stateful but
cooperative pirates

— Tracing query complexity k(n,d) = 0(n?)

* Theorem: Every (1,1/10n)-DP mechanism
for answering k = k(n + 1, d) counting
queries within error ¢ < 1/2 on datasets with
n individuals from X = {0,1}¢ must run in
time superpolynomial in d
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Proof Sketch (1/4)

* Let M be as in the statement and setup the
traitor tracing scheme with n + 1 users

* Dataset x contains the secret keys sk; €
{0,1}¢ of all users but one (chosen at random)

* Counting queries: q.(sk;) = D(sk;, c)
— Hence, M(x) yields an 2 a approximation a of the
number of users in x whose key decryptscto 1

— If ¢ is a valid encryption of m, then |[a — m| <
a < 1/2 so that rounding a equals m
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Proof Sketch (2/4)

* Define the pirate to be

 B(Ckies 1) = MG ey rte)] |

— The accuracy of M implies that P cooperates
— Moreover, by postprocessing, P is DP too

* Next, we show that tracing contradicts DP

 Thus, P must not be traceable and hence
must have superpolynomial running time
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Proof Sketch (3/4)

* By traceability of the traitor traicing, w.p. = 1,
algorithm TP((Skdies) (tk) outputs i € S
* Thus, for large enough n, thereisani” s.t.

[ Pr[TP(SkDies ) (tk) = i*] = 1/2n ]

e LletS' ={1,...,n+ 1}\{i*}; by DP:

r . N
pr[TP((Ski)iesr) (tk) = i*]

<e-Pr [T%"i%es"') (th) = i*] +1/10n
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Proof Sketch (4/4)

e Thus,
a

Pr | TP(Kdies') (tk) = i*]

g > 1/2en — 1/10en = Q(1/n) )

* Corollary: Assuming OWFs, for every n =
poly(d) there is no poly-time (1,1/10n)-DP
mechanism for answering more than 0(n?)
queries over X = {0,1}¢ withina < 1/2

— This is tight, as we can accurately answer k =
Q(n%) counting queries in polynomial time
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Simple Traitor Tracing

* Let (E, D) be any symmetric encryption

* The broadcast key bk = (sky, ..., sk,,) consists
of n independent secret keys, and tk = bk

* To encrypt b € {0,1}, output

[ ¢ = (E(sky, b), ..., E(sk,, b)) ]

* To decrypt ¢ = (cV, ..., c™) use sk;

— Suffices to know which portion corresponds to
the i-th user
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How to Trace (1/3)

* Tracing exploits ciphertexts that different
users would decrypt differently

TrE(sk, i)
[: (E(sky, 1), ..., E(sk;, 1), E(sk;;1,0), ..., E(sky, 0)) J

— Note that users j < i would output 1, but users
J > 1 would output 0
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How to Trace (2/3)

e Consider the matrix below

(OO ..00 11..11 11..11 11..11 11...11\
00..00 11..11 11..11
00..00 11..11

00 ...00 00..00 11..11
\ .

* Encrypt each column and randomly permute

— l.e., generate random i, ..., i, € |0,n] fork =
(n+ 1) - s s.t. each of [0, n] appears s times

—Then C = (¢;) jepr With ¢; 4 'I'rE(Sk (i)
W —,




How to Trace (3/3)

* Next, query P((sk;);es,) with (cq, ..., Cx)
obtaining (b4, ..., by ), and compute

1
]:lj=l

 Qutputanyi®suchthatp; —p;—1 = 1/n

— Note that if ¢ «¢ TrE(sk, 0), then every user
would return b = 0 (similarly for TrE(sk,n))

— Thus, py = 0 and p,;, = 1 and so there exists ("
such thatp; —p;»_1 = 1/n
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* |t remains to show thatw.h.p.i* € S

* Note that TrE(sk,i*) and TrE(sk,i" — 1)
differ for the message encrypted under sk;-
— And if i* & S this key is unknown to the pirate

* By security of encryption, we can replace k
repetitions of E(sk;+, 1) with E(sk;+, 0)
without effecting the success of the pirate

— After this change TrE(sk, i) and TrE(sk,i* — 1)
are identical
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Analysis (2/2)

* Since iq, ..., I} are random, the pirate does not
know which i; is (" and whichisi® — 1

— Thus, if it wants to make p;+ larger than p;~_, for
1* & S it can't do better than guessing

* Taking s = O(n?) and applying Chernoff yields
that Vi € S w.h.p.p; —p;_1 = 0o(1/n)
* Note that the query complexity is k = O(n3)

— The above can be improved to k = 0(n?) by
using fingerprinting codes
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Hardness of Synthetic Data (1/4)

* Some mechanisms work by producing a
compact representation of all answers

— This is the case, e.g., of SmallDB

* |n the traitor tracing world this corresponds to
stateless pirates

— If the ciphertext length is £(n, d), the previous
proof rules out efficient mechanisms for

answering families Q of counting queries of
description length £(n + 1,d) and size pt(n+1.d)

— Interesting only if £ K n
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Hardness of Synthetic Data (2/4)

* The above applies only to "unnatural™ @

* Towards overcoming this limitation, consider
the following database using signature (S, V)
— Choose single sign/verify key pair (vk”*, sk™)

— Database made by n rows: (m;, S(sk*, m;), vk™)
for random messages m;

— One query for each vk: What fraction of rows are
valid signatures w.r.t. vk (i.e., q,, () = V(vk,"))?
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Hardness of Synthetic Data (3/4)

 Efficient curator cannot generate synthetic
dataset which is accurate w.r.t. vk~

— Let M output £ € ({0,1}%)"
— By accuracy, X contains X; = (7, ;) such that
v(vk*, (m;,6,)) =1
* Ifm; € x, then M violates unforgeability

* Ifm; € x, then M violates differential privacy

— For each i € [n], if M has (&, §)-DP it outputs m;
w.p. <eé/29+§
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Hardness of Synthetic Data (4/4)

* Finally, it is possible to express the query
V(vk™,-) with 2-way conjunctions
— By means of the PCP theorem

 Theorem: Assuming OWFs, there exists @ > 0
such that there is no n = poly(d) and poly-
time (1,1/10n)-DP mechanism that given
dataset ({0,1}%)™ outputs a synthetic dataset
approximating all the queries in ngnj (d) to
within error at most

%4 CI1S SAPIENZA
N e



* Until now the goal was designing differentially
private mechanisms, but the data is assumed

to be already there

* But why should someone participate in the
computation?

 Why would they give their true data?
* Do we need compensation? How much?
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Game Theory and Mechanism Design

* |dea: Solve optimization problem

e Catch: No access to inputs
— Inputs held by self-interested agents

* Design incentives and choice of solution
(mechanism) that incentivizes truth-telling
— No need for participants to strategize
— Simple to predict what will happen

— Often a non-truth-telling mechanism can be
replaced by one where the coordinator does the
lying on behalf of the participants
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* Composition: Approximate truthfulness still
satisfied under composition!

* Collusion resistance: O (ke&)-approximate
dominant strategy, even for coalitions of k
agents

* Both properties not immediate in game-
theoretic mechanism design

* All done without money!
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e But not only truthful reporting gives an
approximate dominant strategy

— Any report does so, even malicious ones

* How do we actually properly get people to
truthfully participate?

— Perhaps need compensation
— Much harder to achieve
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Differential Privacy as a Tool

* Nash Equilibrium: An assignment of players to
strategies so that no player would benefit by
changing strategy, given how everyone else is
playing

* Correlated Equilibrium: Players have access to
correlated signals (e.g., traffic light)

— Every Nash equilibrium is a correlated equilibrium,
but not viceversa

* Differential privacy has applications to
mechanism design with correlated equilibria
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The Issue of Verification

* Challenging to strictly incentivize truth-telling
in differentially private mechanisms design

* Exceptions:

— Responses are verifiable
— Agents care about outcome

* Challenge: No observed outcome

— What is the prevalence of drug use?
— Are students cheating in class?

N
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Privacy and Game Theory

e Asymptotic truthfulness, new mechanisms
design and equilibrium selection results

* |Interesting challenge of modeling costs for
privacy

* |n order to design privacy for humans do we
need to understand

— How people currently value or should value it?
— What are the right promises to give?
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The fundamental law still applies!

/

\.

Overly accurate estimates of too many
statistics is blatantly non-private

\
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