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Data Exploitation
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• Availability of lots of data
– Social networks, financial data, medical records…

• All these data are an asset
– We would like to exploit them

𝑥!

𝑥"

Dataset

𝑥 = (𝑥!, 𝑥", … )



Applications
• Finding statistical correlations

– Genotype/phenotype association
– Correlating medical outcomes with risk factors

• Publishing aggregate statistics
• Noticing events/outliers

– Intrusion detection

• Datamining/learning
– Update strategies based on customers data
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Data Analysis and Privacy
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• How to define privacy?
– Intuitively we want that published statistics do not 

undermine privacy of the individuals
– After all statistics are just aggregated data about 

the overall population

𝑥!

𝑥"

𝑞!
𝑞!(𝑥)

Dataset 𝑥 Data Analyst

⋮



The Statistics Masquerade
• Differential attack

– How many people in the room XYZ last night?
– How many people, other than the speaker, XYZ 

last night?

• Needle in a haystack
– Determine presence of an individual genomic data 

in GWAS case group based on aggregate stats

• The big bang attack
– Reconstruct sensitive attributes given statistics 

from multiple overlapping datasets
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NYC Taxicab Data
• 2014: NYC Taxi & Limo Commission sharing 

visualization on taxi usage statistics on twitter
– Chris Whong filed a FOIL request and released the 

dataset publicly online
– 19 GB with all taxi fares and statistics in 2013

• Attempt to anonymize the data
6B111958A39B24140C973B262EA9FEA5, 
D3B035A03C8A34DA17488129DA581EE7, …

– Someone discovered those were the MD5 hash of 
the driver’s medallion and license number
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The Netflix Prize
• 2006-2009: 1M USD for improving the 

recommendation engine
• Anonymized dataset including movie id, user 

id, rating and date
• The dataset was de-anonymized by combining 

it with the public IMDB dataset
– Matching users that gave similar preferences
– A class action lawsuite was filed against Netflix

Differential Privacy
Data Privacy and Security

8



Lessons to be Learned
• Privacy is a concern when publishing datasets
• Wait: This does not apply to me!

– Don’t make the entire dataset available
– Only publish aggregate statistics

• Even if only data aggregations are published 
privacy can be broken

• Overly accurate estimates of too many 
statistics is blatantly non-private
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Privacy-Preserving Data Analysis?
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• Can’t learn anything new about Alice?
– Reminiscent of semantic security for encryption

• Ideally: Learn same thing if Alice is replaced
by a random member of the population

𝑥!

𝑥"

𝑞!
𝑞!(𝑥)

Dataset 𝑥 Data Analyst



Differential Privacy
• Outcome of analysis is roughly equally likely

– Independent of whether any individual joins, or 
refrains from joining, the dataset

– Alice goes away, Bob joins, Alice replaced by Bob
– Small perturbations do not matter

• Note that instead if we completely change the 
dataset we get completely different answers!

• Adopted in real-world applications by Apple, 
Google and Microsoft
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More Formally…
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Definition: Mechanism 𝐌:𝒳#×𝒬 → 𝒴 gives 𝜀-
differential privacy if for all pairs of adjacent datasets 

𝑥, 𝑥′ ∈ 𝒳#, and for all queries 𝑞 ∈ 𝒬:
∀𝑦 ∈ 𝒴,ℙ[𝐌 𝑥, 𝑞 = 𝑦] ≤ 𝑒$ : ℙ[𝐌 𝑥%, 𝑞 = 𝑦]

𝑥!

𝑥"

𝑞!
𝑞!(𝑥)

Dataset 𝑥 Data Analyst



Notes on the Definition
• All that an adversary learns about you, it could 

have learned from the rest of the dataset
– Even if you don't participate
– This doesn't mean nothing about you is leaked
– Can't use DP to take actions on specific individuals

• Worst-case guarantee
– For all datasets, against unbounded adversaries

• Probability over the randomness of the 
algorithm, not over the choice of the dataset
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Counting Queries
• Simply a predicate on rows 𝑞:𝒳 → {0,1}

– Can be extended to datasets 𝒳# by counting the 
fraction of people satisfying the predicate, i.e.

• Point functions: 𝒬#$(𝒳) = {𝑞%}%∈𝒳 s.t.
𝑞% 𝑤 = 1 iff 𝑤 = 𝑦
– Answering all queries in 𝒬&'(𝒳) amounts to 

computing the histogram of the dataset
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𝑞 𝑥 =
1
𝑛
=

()!

#
𝑞(𝑥()



Counting Queries
• Threshold functions: 𝒬$()(𝒳) = {𝑞%}%∈𝒳 s.t.
𝑞% 𝑤 = 1 iff 𝑤 ≤ 𝑦 (with 𝒳 totally ordered)
– Answering all queries in 𝒬'*+(𝒳) amounts to the 

cumulative distribution function of the dataset

• Attribute means: 𝒬*+,-.(𝑑) = {𝑞/}/∈[1] s.t.
𝑞/ 𝑤 = 𝑤/, where 𝑤 ∈ 𝒳 = {0,1}1

– Answering all queries in 𝒬,-./0(𝑑) amounts to 
computing the fraction of the dataset possessing 
each of the 𝑑 attributes (1-way marginal statistics)
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Counting Queries

• Conjunctions: 𝒬34-56 (𝑑) with all conjunctions 
of 𝑡 ∈ [0, 𝑑] literals on 𝒳 = {0,1}1

– E.g., 𝒬12/3" (5) contains 𝑞 𝑤 = 𝑤"⋀¬𝑤4 (what 
fraction of individual in the dataset have lug 
cancer and are non-smokers?)

– These are called 𝒕-way marginal
– Answering all queries in 𝒬12/35 (𝑑) amounts to 

computing the 𝒕-way contingency table
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Postprocessing
• Theorem: If 𝐌:𝒳7×𝒬 → 𝒴 is 𝜀-DP, and 
Ψ:𝒴 → 𝒵 is any randomized function, then 
Ψ ∘ 𝐌:𝒳7×𝒬 → 𝒵 is 𝜀-DP

• Let Ψ be a distribution on deterministic
𝜓:𝒴 → 𝒵. For any 𝑧 ∈ 𝒵:
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ℙ Ψ ○𝐌 𝑥 = 𝑧
= 𝔼6←8 ℙ 𝐌 𝑥 = 𝜓9! 𝑧
≤ 𝔼6←8 𝑒$ : ℙ 𝐌 𝑥% = 𝜓9! 𝑧
= 𝑒$ : ℙ Ψ ○ 𝐌 𝑥′ = 𝑧



Group Privacy
• Theorem: If 𝐌 is 𝜀-DP, then for all pairs of 

datasets 𝑥, 𝑥′ ∈ 𝒳7, 𝐌(𝑥) and 𝐌(𝑥′) are 𝑘𝜀-
DP for 𝑘 = 𝑑(𝑥, 𝑥′)
– Here, 𝑑(𝑥, 𝑥′) is the number of rows that need to 

be changed to go from 𝑥 to 𝑥′
– Let 𝑥(:! be obtained from 𝑥(  by changing one row  
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ℙ 𝐌(𝑥;) = 𝑦 ≤𝑒$ : ℙ 𝐌 𝑥! = 𝑦
≤ 𝑒$ : 𝑒$ : ℙ 𝐌 𝑥" = 𝑦
⋮
≤ 𝑒<$: ℙ 𝐌 𝑥< = 𝑦



Basic Composition
• Theorem: If 𝐌!, … ,𝐌8  are 𝜀-DP, then 𝐌 s.t. 
𝐌 𝑥 = (𝐌! 𝑥 , … ,𝐌8(𝑥)) is 𝑘𝜀-DP

• Fix 𝑥~𝑥′. For 𝑦 ∈ 𝒴, define

– When Λ𝐌 > ||𝐌 >% (𝑦) > 0, the outcome 𝑦 is 
"evidence" that the dataset is 𝑥 rather than 𝑥′

– Thus, 𝜀-DP means that for all 𝑥~𝑥′, and for all 𝑦, 
Λ𝐌 > ||𝐌 >% 𝑦 ≤ 𝜀
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Λ𝐌 : ||𝐌 :< 𝑦 = ln
ℙ 𝐌 𝑥 = 𝑦
ℙ 𝐌 𝑥< = 𝑦



Basic Composition
• In our case:
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Λ𝐌 > ||𝐌 >% 𝑦

= ln
ℙ 𝐌! 𝑥 = 𝑦!˄…˄𝐌< 𝑥 = 𝑦<
ℙ 𝐌! 𝑥′ = 𝑦!˄…˄𝐌< 𝑥′ = 𝑦<

= ln
∏()!
< ℙ 𝐌( 𝑥 = 𝑦(

∏()!
< ℙ 𝐌( 𝑥′ = 𝑦(

==
()!

<
Λ𝐌! > ||𝐌! >% 𝑦(

⇒ Λ𝐌 > ||𝐌 >% 𝑦 ≤=
()!

<
Λ𝐌! > ||𝐌! >% 𝑦( ≤ 𝑘𝜀



Summary of Properties
• Immune to auxiliary information

– Current and future side information

• Automatically yields group privacy
– Privacy loss 𝑘𝜀 for groups of size 𝑘

• Composition
– Can bound cumulative privacy loss over multiple 

analysis (the epsilons add up)
– Can combine a few differentially private 

mechanisms to solve complex analytical tasks
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Did You XYZ Last Night?
• Flip a coin

– If heads, flip again and return YES if heads, and 
else return NO

– If tails, answer honestly

• ℙ[>?@|A)B$(C>?@]
ℙ[>?@|A)B$(CDE]

= ⁄! "G ⁄! "H( ⁄! "GJ)
JG ⁄! "H(!/")

= 3

• ℙ[DE|A)B$(CDE]
ℙ[DE|A)B$(C>?@]

= 3

• Gives 𝜀-DP for 𝜀 = ln 3 ≈ 1.098
• Expected #YES: ⁄1 4 1 − 𝑝 + ⁄3 4𝑝
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𝑝 = fraction of 
people that XYZ
= 2 #YES − 1/4



Randomized Response: Privacy
• Let 𝑞:𝒳 → {0,1} be a counting query
• For each row 𝑥M, let 𝐌 𝑥M = 𝑞(𝑥M) w.p. 

⁄1 2 + 𝜀 and 𝐌 𝑥M = 𝑞(𝑥M) w.p. ⁄1 2 − 𝜀
• Consider 𝐌 𝑥 = 𝐌 𝑥!, … , 𝑥7 = (𝑦!, … , 𝑦7)

– Assume 𝑥~𝑥′ differ only in the 𝑗-th row
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ℙ 𝐌 𝑥 = 𝑦
ℙ 𝐌 𝑥′ = 𝑦

=
∏(ℙ 𝐌 𝑥( = 𝑦(
∏(ℙ 𝐌 𝑥(% = 𝑦(

=
ℙ 𝐌 𝑥@ = 𝑦@
ℙ 𝐌 𝑥@% = 𝑦@

≤
⁄1 2 + 𝜀
⁄1 2 − 𝜀



Randomized Response: Accuracy 

• The latter is ≤ 𝑒N(O) when, say, 𝜀 ≤ 1/4 and 
thus the mechanism 𝐌 has 𝑂(𝜀)-DP

• As for accuracy, note that
– 𝔼 𝑦( = ⁄1 2 + 𝜀 : 𝑞 𝑥( + ⁄1 2 − 𝜀 :
1 − 𝑞 𝑥( = 2𝜀 : 𝑞 𝑥( + ⁄1 2 − 𝜀

– Thus, 𝑞 𝑥( = 1/(2𝜀) : 𝔼 ⁄𝑦( − 1 2 + 𝜀
• This suggests the following estimator
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Y𝑦 =
1
𝑛
=

()!

# 1
2𝜀
: ⁄𝑦( − 1 2 + 𝜀

𝔼 Y𝑦 = 𝑞(𝑥)



Randomized Response: Accuracy 
• Next, we analyze the variance

– V Y𝑦 = V !
#
∑()!# !

"$
: ⁄𝑦( − 1 2 + 𝜀 = !

4$"#"
:

∑()!# V 𝑦( ≤ !
4$"#"

: 𝑛 : !
4
= !

!A$"#
– Finally, by Chebyshev’s inequality

– As 𝑛 → ∞, we get an increasingly accurate 
estimate of the result
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Y𝑦 − 𝑦 ≤ 𝑂
1
𝑛 : 𝜀



Differential Privacy by Adding Noise
• Let 𝑞 be a counting query
• Answer with 𝐌 𝑥 = 𝑞 𝑥 + 𝐧𝐨𝐢𝐬𝐞

– But according to which distribution?

• Note that if 𝑥~𝑥′, then |𝑞 𝑥 − 𝑞(𝑥′)| ≤ 1/𝑛
• At every 𝑦, the density of output distribution 

should be same for 𝑥, 𝑥′ up to a factor 𝑒O
– Density of 𝐌 𝑥 (resp. 𝐌 𝑥′ ) at 𝑦 is that of the 

noise at 𝑧 = 𝑦 − 𝑞 𝑥 (resp. 𝑧 = 𝑦 − 𝑞 𝑥′ )
– Again, |𝑧 − 𝑧′| ≤ 1/𝑛
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Laplace Mechanism: Privacy

• Let 𝐿(𝜇, 𝜎) at 𝑧 be ⁄1 (2𝜎) ` 𝑒P|QPR|/S

• If we set µ = 0, 𝜎 = 1/𝜀𝑛, we have:
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ℙ[𝐌 𝑥 = 𝑦]
ℙ[𝐌 𝑥% = 𝑦]

= 𝑒
B9C ># 9|B9C(>)|

F

≤ 𝑒
C > 9C >#

F ≤ 𝑒
!
#F = 𝑒$



Laplace Distribution
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Laplace Mechanism: Accuracy
• Note that 𝐿(0, 𝜎) has mean 0 and standard 

deviation 2𝜎, and exponentially vanishing 
tails: ℙ[ 𝐿 0, 𝜎 > 𝜎𝑡] ≤ 𝑒P6

• Hence, for any 0 < 𝛽 ≤ 1:

• With high probability we get error 𝑂(1/(𝜀𝑛))
– Compare this with accuracy 𝑂(1/𝜀 𝑛) of 

randomized responses
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ℙ |𝑞 𝑥 − 𝑦| > ln ⁄(1 𝛽) : ⁄1 (𝜀𝑛) ≤ 𝛽



Laplace Mechanism: Multivariate Case 
• Not specific to counting queries

– All we used is that |𝑞 𝑥 − 𝑞(𝑥′)| ≤ 1/𝑛 for 𝑥~𝑥′
• For arbitrary 𝑞:𝒳7 → ℝ1 scale the noise to 

global ℓ!-sensitivity

• Theorem: Let 𝑞:𝒳7 → ℝ1 	. The mechanism 
𝐌 𝑥 = 𝑞 𝑥 + (𝑧!, … , 𝑧1) where each 𝑧M ←
𝐿(0, ∆!/𝜀) satisfies 𝜀-DP
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∆!= max
>~>%

𝑞 𝑥 − 𝑞(𝑥′) ! ==
()!

#
𝑦( − 𝑦(%



Approximate Differential Privacy
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Definition: Mechanism 𝐌:𝒳#×𝒬 → 𝒴 gives (𝜀, 𝛿)-
differential privacy if for all pairs of adjacent datasets 

𝑥, 𝑥′ ∈ 𝒳#, and for all queries 𝑞 ∈ 𝒬:
∀y ∈ 𝒴,ℙ 𝐌 𝑥, 𝑞 = 𝑦 ≤ 𝑒$ : ℙ 𝐌 𝑥%, 𝑞 = 𝑦 + 𝛿

𝑥!

𝑥"

𝑞!
𝑞!(𝑥)

Dataset 𝑥 Data Analyst



Benefits of the Relaxation
• Gaussian noise

– Leading to better accuracy

• Advanced composition
– Can answer 𝑘 queries with cumulative loss 𝑘 : 𝜀
– Instead of 𝑘𝜀 as in pure differential privacy

• Can use cryptography to simulate trusted 
center (see a later lecture)
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Gaussian Distribution
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𝑁 𝜇; 𝜎! =
1

𝜎 2𝜋
1 𝑒"

($"%)!
!'!



Gaussian Mechanism
• Let 𝑞:𝒳7 → ℝ1. The global ℓ"-sensitivity is:

• Theorem: Let 𝑞:𝒳7 → ℝ1 	. The mechanism 
𝐌 𝑥 = 𝑞 𝑥 + (𝑧!, … , 𝑧1) where each

𝑧M~𝑁 0, " T-(!."V/W)H∆!
!

O!
satisfies 𝜀, 𝛿 -DP
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∆"= max
>~>%

𝑞 𝑥 − 𝑞(𝑥′) " ==
()!

#
𝑦( − 𝑦(%

"



Gaussian versus Laplace
• Note that for every vector 𝑦 ∈ ℝ1, 𝑦 " ≤

𝑦 ! ≤ 𝑑 ` 𝑦 "

• Suppose that 𝑥 ∈ {0,1}7×1 and take the query 
𝑞 𝑥 = !

7
` ∑MC!7 𝑥M for the multivariate mean

– Here, ∆!≤ 𝑑/𝑛 and ∆"≤ 𝑑/𝑛
– The Laplace mechanism would add noise of 

magnitude 𝑂(𝑑/𝑛𝜀) whereas the Gaussian 
mechanism needs less noise 𝑂( 𝑑 : ln(1/𝛿)/𝑛𝜀)
for roughly the same accuracy
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Gaussian Mechanism: Privacy
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• We first show that for 𝐌 𝑥 = 𝑞 𝑥 + 𝑧
where 𝑧 ← 𝑁 0, 𝜎" ` 𝐼	 the privacy loss is 

distributed as 𝑁 Z : PZ(:<) !
!

"S!
, Z : PZ(:<) !

!

S!

ln
ℙ 𝐌 𝑥 = 𝑞 𝑥 + 𝑧
ℙ 𝐌 𝑥% = 𝑞 𝑥 + 𝑧

= ln
exp(− 𝑧 "

"/2𝜎")
exp(− 𝑧 + 𝑣 "

"/2𝜎")

= −
1
2𝜎"

: 𝑧 "
" − 𝑧 + 𝑣 "

"

= −
1
2𝜎"

: =
@)!

H
𝑧@" − 𝑧@ + 𝑣@

"



Gaussian Mechanism: Privacy
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• Fact: 𝑎 ` 𝑁 0,1 + 𝑏 ` 𝑁(0,1)~𝑁(0, 𝑎" + 𝑏")  
• Simplifying, we get:

– The constant term is I "
"

"F"
 and matches the mean

– The other term is !
F"
: ∑@ 𝑧@𝑣@ =∑( 𝑧(

) = 𝑧′, where 

𝑧@%~𝑁(0, 𝜎" : 𝑣@") and 𝑧′~𝑁 0, I "
"

F"

ln
ℙ 𝐌 𝑥 = 𝑞 𝑥 + 𝑧
ℙ 𝐌 𝑥% = 𝑞 𝑥 + 𝑧

=
1
2𝜎"

: =
@)!

H
(2𝑧@𝑣@ + 𝑣@")



Gaussian Mechanism: Privacy
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• To finish the proof, we need to show that the 
privacy loss is ≤ 𝜀 with probability ≥ 1 − 𝛿

• For 𝑧̃~𝑁(0,1) and 𝜎 = ∆" ` 𝑡/𝜀, we can write:

– For simplicity we drop the small term 𝜀/(2𝑡)

ℙ
𝑞 𝑥 − 𝑞(𝑥′) "

2𝜎
: 𝑧̃ +

𝑞 𝑥 − 𝑞(𝑥′) "
"

2𝜎"
≥ 𝜀

= ℙ 𝑧̃ ≥
𝜀𝜎

𝑞 𝑥 − 𝑞 𝑥% "
−

𝑞 𝑥 − 𝑞 𝑥% "

2𝜎

≤ ℙ 𝑧̃ ≥ 𝑡 −
𝜀
2𝑡



Gaussian Mechanism: Privacy
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• By standard tail bounds ℙ 𝑧̃ ≥ 𝑡 ≤ 𝑒P6!/"

• If we set 𝑡 = 2ln(2/𝛿) we obtain that 
ℙ 𝑧̃ ≥ 𝑡 ≤ 𝛿, which implies (𝜀, 𝛿)-DP

• Note that the latter corresponds roughly to 

σ ≈
∆"
𝜀
: ln(1/𝛿)



Properties of Approximate DP
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• Post processing: If 𝐌:𝒳7×𝒬 → 𝒴 is (𝜀, 𝛿)-DP, 
and 𝐹:𝒴 → 𝒵 is any randomized function, 
then 𝐹 ∘ 𝐌:𝒳7×𝒬 → 𝒵 is (𝜀, 𝛿)-DP

• Group privacy: If 𝐌 is (𝜀, 𝛿)-DP, then for all 
pairs of datasets 𝑥, 𝑥′ ∈ 𝒳7, 𝐌(𝑥) and 𝐌(𝑥′)
are (𝑘𝜀, 𝑘𝛿 ` 𝑒 8P! O)-DP for 𝑘 = 𝑑(𝑥, 𝑥′)

• Basic composition: If 𝐌!, … ,𝐌8  are (𝜀, 𝛿)-DP, 
then 𝐌 s.t. 𝐌 𝑥 = (𝐌! 𝑥 , … ,𝐌8(𝑥)) is 
(𝑘𝜀, 𝑘𝛿)-DP



Advanced Composition
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• Theorem: For all 𝜀, 𝛿, 𝛿< > 0, if 𝐌!, … ,𝐌8  are 
(𝜀, 𝛿)-DP, then 𝐌 𝑥 = (𝐌! 𝑥 , … ,𝐌8(𝑥)) is 
( ̃𝜀, s𝛿)-DP for

– In the high-privacy regime, (𝑒$−1)/ (𝑒$ + 1) ≈
𝜀/2 and thus we can ignore the second term in ̃𝜀

– The above holds even if in the adaptive setting

̃𝜀 = 𝜀 2𝑘 : log(1/𝛿′) + 𝑘𝜀 :
𝑒$ − 1
𝑒$ + 1

r𝛿 = 𝑘𝛿 + 𝛿′



Reduction to Binary(ish) Mechanisms
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• What is the simplest pair of random variables 
(𝑈, 𝑉) satisfying the definition of (𝜀, 𝛿)-DP? 
– I.e., with probability ≥ 1 − 𝛿 

ΛJ||K = ln
ℙ 𝑈 = 𝑣
ℙ 𝑉 = 𝑣

≤ 𝜀

𝑣 ℙ 𝑈 = 𝑣 ℙ 𝑉 = 𝑣
0 𝑒*(1 − 𝛿)/(1 + 𝑒*) (1 − 𝛿)/(1 + 𝑒*)
1 (1 − 𝛿)/(1 + 𝑒*) 𝑒*(1 − 𝛿)/(1 + 𝑒*)

I am 𝑈 𝛿 0
I am 𝑉 0 𝛿



Reduction to Binary(ish) Mechanisms
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• Lemma: Let 𝐴 and 𝐵 be s.t. Λ[||\ ≤ 𝜀 and 
Λ\||[ ≤ 𝜀 w.p. 1 − 𝛿; there is a randomized 

mapping Ψ s.t. Ψ(𝐴)~𝑈 and Ψ(𝐵)~𝑉 
𝐴𝐵

ΛL||M(𝑣) > 𝑒$
0

ΛL||M(𝑣) < 𝑒$

1

I am 𝑈 I am 𝑉



Reduction to Binary(ish) Mechanisms
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• We can think 𝐌/  takes as input 𝑥 ∈ 𝒳7 as well 
as the transcript 𝜏/P! of previous outputs 

• Corollary: There is a randomized mapping Ψ∗ 
s.t. 𝐌 𝑥 = (𝐌! 𝑥 , … ,𝐌8(𝑥)) satisfies
– 𝐌 𝑥 ~Ψ∗(𝑈!, … , 𝑈<), with 𝑈!, … , 𝑈<~𝑈
– 𝐌 𝑥′ ~Ψ∗(𝑉!, … , 𝑉<), with 𝑉!, … , 𝑉<~𝑉

• By post-processing, it suffices to bound the 
privacy loss between 𝑈!, … , 𝑈8  and 𝑉!, … , 𝑉8



Composition of Binary(ish) Mechanisms
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• Let 𝑣/ ∈ {0,1, I	am	𝑈} be the 𝑗-th realization
– That is, 𝑣@~𝑈
– When 𝑣@ = I	am	𝑈, privacy is violated, but

– Next, we condition on 𝐸! not happening
ℙ ∃𝑣@ 	s. t. 𝑣@ = I	am	𝑈 = 1 − (1 − 𝛿)<≤ 𝑘𝛿

ln
ℙ (𝑈!, … , 𝑈<) = 𝑣
ℙ (𝑉!, … , 𝑉<) = 𝑣

==
@)!

<
ln

ℙ 𝑈@ = 𝑣@
ℙ 𝑉@ = 𝑣@

=
@)!

< 1 − 𝛿 𝑒$ !9I$ /(𝑒$ + 1)
1 − 𝛿 𝑒$I$/(𝑒$ + 1)

==
@)!

<
𝜀(1 − 2𝑣@)

Call	this	event	𝐸!



Composition of Binary(ish) Mechanisms
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• Note that (always conditioning on 𝐸!

• Hence, we can compute the expectation

– Finally, we apply the Chernoff bound in order to 
prove that the privacy loss does not exceed its 
expectation with probability more than 𝛿′ 

𝔼 ln
ℙ (𝑈!, … , 𝑈<) = 𝑣
ℙ (𝑉!, … , 𝑉<) = 𝑣

= 𝑘𝜀 :
𝑒$ − 1
𝑒$ + 1

1 − 2𝑣@ = �
1	w. p. 𝑒$/(1 + 𝑒$)
−1	w. p. 1/(1 + 𝑒$)



Composition of Binary(ish) Mechanisms
• Hoeffding bound: For 𝑋!, … , 𝑋8 i.i.d. and 

bounded in the range [𝑎, 𝑏], we have:

• Define the event that the privacy loss goes too 
far from its mean
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ℙ =
@)!

<
𝑋@ ≥ 𝔼 𝑋@ + 𝛾 ≤ 𝑒

9 "O"
<(P9Q)"

ln
ℙ (𝑈!, … , 𝑈<) = 𝑣
ℙ (𝑉!, … , 𝑉<) = 𝑣

> 𝑘𝜀 :
𝑒$ − 1
𝑒$ + 1

+ 𝛽𝜀 𝑘

Call	this	event	𝐸"



Composition of Binary(ish) Mechanisms

• By setting 𝑎, 𝑏 = [−𝜀, 𝜀] and 𝛾 = 𝛽𝜀 𝑘

• Putting it all together using 𝛽 = 2ln(1/𝛿′)
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ℙ (𝑈!, … , 𝑈<) = 𝑣 ∧ 𝐸! ∧ 𝐸"
≤ 𝑒 R$ : ℙ (𝑉!, … , 𝑉<) = 𝑣 ∧ 𝐸! ∧ 𝐸"
≤ 𝑒 R$ : ℙ (𝑉!, … , 𝑉<) = 𝑣

ℙ 𝐸"|𝐸! ≤ 𝑒9S"/"



Composition of Binary(ish) Mechanisms
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ℙ 𝑈∗ = 𝑣 =ℙ 𝑈∗ = 𝑣 ∧ 𝐸! ∧ 𝐸" + ℙ 𝑈∗ = 𝑣 ∧ 𝐸!
+  ℙ 𝑈∗ = 𝑣 ∧ 𝐸! ∧ 𝐸" ≤ℙ 𝑈∗ = 𝑣 ∧ 𝐸! ∧ 𝐸" + ℙ 𝐸!
+  ℙ 𝐸"|𝐸! : ℙ 𝐸!
≤ 𝑒 R$ : ℙ 𝑉∗ = 𝑣 + 𝑘𝛿 + 𝑒9S"/" : 1
𝑒 R$ : ℙ 𝑉∗ = 𝑣 + 𝑘𝛿 + 𝛿% = 𝑒 R$ : ℙ 𝑉∗ = 𝑣 + r𝛿

𝐸! 𝐸"

𝐸! ∧ 𝐸"



Exponential Mechanism
• Until now, we focused on numerical queries
• In some situations, we wish to output objects
• Example: Digital auction

– One seller having infinite copies of digital good
– 𝑛 buyers each with valuation 𝑣(
– What’s the price 𝑝 max. the revenue ∑(:I!VW 𝑝?

• Idea: Use differential privacy
– If 𝑣! = 𝑣" = 1 and 𝑣X = 3.01, the revenue drops 

from 3 to 1.01 increasing 𝑝 from 1 to 1.01
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Exponential Mechanism
• More formally, the mechanism takes as input

– A dataset 𝑥 ∈ 𝒳#, a set of objects ℋ and a score 
function 𝑠:𝒳#×ℋ → ℝ

– Only the dataset is private

• Define the sensitivity of the score function:

• Definition: The exponential mechanism 
outputs ℎ ∈ ℋ w.p. ∝ exp(𝜀 ` 𝑠(𝑥, ℎ)/(2∆𝑠))
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∆𝑠 ≤ max
Y∈ℋ

max
>,>#:>~>%

𝑠 𝑥, ℎ − 𝑠(𝑥%, ℎ)



Exponential Mechanism: Privacy
• Theorem: The exponential mechanism is ε-

differentially private
• Fix any 𝑥~𝑥′ and ℎ ∈ ℋ
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ℙ 𝐌 𝑥,ℋ, 𝑠 = 𝑦
ℙ 𝐌 𝑥′,ℋ, 𝑠 = 𝑦

=

exp(𝜀 1 𝑠(𝑥, ℎ)/(2∆𝑠))
∑+"∈ℋ exp(𝜀 1 𝑠(𝑥, ℎ′)/(2∆𝑠))

exp(𝜀 1 𝑠(𝑥′, ℎ)/(2∆𝑠))
∑+"∈ℋ exp(𝜀 1 𝑠(𝑥′, ℎ′)/(2∆𝑠))

= exp 𝜀 1 (𝑠 𝑥, ℎ − 𝑠 𝑥), ℎ )/(2∆𝑠) 1
∑+"∈ℋ exp 𝜀 1 𝑠 𝑥), ℎ) /(2∆𝑠)
∑+"∈ℋ exp 𝜀 1 𝑠 𝑥, ℎ) /(2∆𝑠)

≤ exp(𝜀/2) 1
∑+"∈ℋ exp(𝜀/2) 1 exp 𝜀 1 𝑠 𝑥, ℎ) /(2∆𝑠)

∑+"∈ℋ exp 𝜀 1 𝑠 𝑥, ℎ) /(2∆𝑠)
= exp(𝜀)



Exponential Mechanism: Accuracy
• Theorem: Let 𝑠∗ 𝑥 = max

^∈ℋ
𝑠(𝑥, ℎ) and ℋ∗ be 

the set containing all ℎ ∈ ℋ such that 
𝑠 𝑥, ℎ = 𝑠∗ 𝑥 . Then:

• Corollary: Since |ℋ∗| ≥ 1, we get
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ℙ 𝑠 𝐌 𝑥,ℋ, 𝑠 ≤ 𝑠∗ 𝑥 −
2∆𝑠
𝜀
: ln

|ℋ|
|ℋ∗|

+ 𝛽 ≤ 𝑒9S

ℙ 𝑠 𝐌 𝑥,ℋ, 𝑠 ≤ 𝑠∗ 𝑥 −
2∆𝑠
𝜀
: ln |ℋ| + 𝛽 ≤ 𝑒9S



Exponential Mechanism: Accuracy
• By definition:

– Set 𝛾 = 𝑠∗ 𝑥 − 2∆𝑠/𝜀 : ln ℋ /|ℋ∗| + 𝛽
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ℙ 𝑠 𝐌 𝑥,ℋ, 𝑠 ≤ γ

=
∑Y∈ℋ:](>,Y)VO exp(𝜀 : 𝑠(𝑥, ℎ)/(2∆𝑠))
∑Y#∈ℋ exp(𝜀 : 𝑠(𝑥, ℎ′)/(2∆𝑠))

≤
ℋ : exp 𝜀𝛾/(2∆𝑠)

ℋ∗ : exp 𝜀𝑠∗ 𝑥, ℎ /(2∆𝑠)

=
ℋ
ℋ∗ : exp(𝜀(𝛾 − 𝑠

∗ 𝑥, ℎ )/(2∆𝑠))



Application: Laplace Mechanism
• Let 𝑥 ∈ 𝒳7 and 𝑞:𝒳7 → ℝ with sensitivity ∆

– Set 𝑥 to be the dataset, ℝ = ℋ be the objects, 
and 𝑠 𝑥, ℎ = −|𝑞 𝑥 − ℎ| be the score

– The latter is identical to the Laplace mechanism 
up to a factor of 2 (resulting in twice the noise)

– Actually, the factor of 2 can be removed by 
revisiting the privacy proof
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ℙ 𝐌 𝑥,ℋ, 𝑠 = ℎ ∝ exp(𝜀 : −|𝑞 𝑥 − ℎ|/(2∆𝑠))



Application: Selling Digital Goods
• Example: Digital auction

– One seller having infinite copies of digital good
– 𝑛 buyers each with valuation 𝑣( ∈ [0,1]
– Price 𝑝 ∈ [0,1] maxim. the revenue 𝑝 : 𝑖: 𝑣( ≤ 𝑝

• We first discretize ℋ = {𝛼, 2𝛼, … , 1} for some 
𝛼, so that ℋ = 1/𝛼
– Letting 𝑝∗ = max

W
𝑝 : 𝑖: 𝑣( ≤ 𝑝 , we get 

𝑠∗ 𝑣!, … , 𝑣# ≥ 𝑝∗ − 𝛼𝑛 (round down 𝑝 to the 
closest multiple of 𝛼, loosing at most 𝛼𝑛)
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Application: Selling Digital Goods
• Example: Digital auction

– One seller having infinite copies of digital good
– 𝑛 buyers each with valuation 𝑣( ∈ [0,1]
– Price 𝑝 ∈ [0,1] maxim. the revenue 𝑝 : 𝑖: 𝑣( ≤ 𝑝

• We let 𝑠(𝑥, 𝑝) be the revenue 𝑝 ` 𝑖: 𝑣M ≤ 𝑝
– Since 𝑝 ≤ 1 and changing an individual only 

affects 𝑖: 𝑣( ≤ 𝑝 by one, ∆𝑠 ≤ 1
– Thus, 𝑠(𝑥, 𝑝) is at least 𝑝∗ − 𝛼𝑛 − ln(1/𝛼)/𝜀

resulting in 𝑝∗ − ln(𝑛)/𝜀 when 𝛼 = ln 𝑛 /(𝑛𝜀)
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Application: Private PAC Learning
• Probably approximately correct learning

– Concept class 𝒞 = 𝑐: {0,1}H→ {0,1}
– 𝑛 elements (𝑥( , 𝑦( = 𝑐∗(𝑥()) for some (unknown) 
𝑐∗ ∈ 𝒞, where 𝑥(~𝐷 (also unknown)

• Goal: Output 𝑐̂ s.t. ℙ:~a 𝑐̂(𝑥) ≠ 𝑐∗(𝑥) is 
minimized

• Example: Learning halfspaces
– Classic task in machine learning
– Intractable with noise
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𝑐∗
𝑐̂



Application: Private PAC Learning
• Theorem: If 𝑛 = Ω(log(|𝒞|)/2𝛼"), then there 

exists 𝑐̂ s.t. ℙ:~a 𝑐̂(𝑥) ≠ 𝑐∗(𝑥) ≤ 𝛼/2
• Get the training data and see how every 

function in 𝒞 classifies the dataset
– Output any function 𝑐̂ ∈ 𝒞 that never errs

• Fix ℎ ∈ 𝒞, 𝑛 = 2𝑡/𝛼". By a Chernoff bound:

– With 𝑡 = Ω(log 𝒞 ), the above holds ∀ℎ ∈ 𝒞
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ℙ.#,…,.$~2 ℙ.~2 ℎ 𝑥 = 𝑐∗(𝑥) −
|𝑖: ℎ 𝑥4 = 𝑐∗(𝑥4)|

𝑛
≥
𝛼
2
≤ 𝑒"5



Application: Private PAC Learning
• Turning to differential privacy, for 𝑥~𝑥′ we 

have the change of a single point (𝑥M<, 𝑦M<)
– Worst case: 𝑥(% may not follow 𝐷 and 𝑦(% ≠ 𝑐∗(𝑥(%)

• Theorem: If 𝑛 = Ω(2log(|𝒞|)/𝛼" +
log(|𝒞|)/(4𝛼𝜀)), then ∃ an 𝜀-DP algorithm 
outputting 𝑐̂ s.t. ℙ:~a 𝑐̂(𝑥) ≠ 𝑐∗(𝑥) ≤ 𝛼

• Apply the exponential mechanism
– Set 𝒞 = ℋ and 𝑠 𝑥, 𝑦 , ℎ = −|𝑖: ℎ 𝑥( ≠ 𝑦(|/𝑛
– So, ∆𝑠 = 1/𝑛 and 𝑠∗ 𝑥, 𝑦 = 0
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Application: Private PAC Learning
• The exponential mechanism guarantees that 

we output 𝑐̂ such that w.h.p.:

– Thus |𝑖: ℎ 𝑥( ≠ 𝑦(|/𝑛 ≤ 𝛼/2
– Putting the two together: ℙ>~^ 𝑐̂(𝑥) ≠ 𝑐∗(𝑥) ≤
𝛼/2 + 𝛼/2 = 𝛼
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𝑠 𝑥, 𝑦 , 𝑐̂ ≥ −
2∆𝑠
𝜀
: ln ℋ = −

2
𝜀𝑛
: ln 𝒞 ≥ −𝛼/2



Answering Many Queries
• Assume we are given a set 𝒬 of 𝑘 = |𝒬|

queries, and we wish to answer all with 𝜀-DP
– First add Laplace noise to achieve 𝜀;-DP
– By basic composition can set 𝜀; = ⁄𝜀 𝑘 so that the 

noise per query has scale O ⁄1 𝜀;𝑛 = 𝑂(𝑘/𝜀𝑛)
• The above implies that we can answer all 

queries in 𝒬 with 𝜀-DP to within error
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𝛼 ≤ 𝑂
𝑘log	𝑘
𝜀𝑛

Setting 𝛽 = 1/𝑂(𝑘)



Answering Many Queries
• For (𝜀, 𝛿)-DP, we can use the Gaussian 

mechanism and advanced composition to get: 

– Thus, we can accurately answer 𝑘 = 𝑜(𝑛)
– However, note that whenever |𝒬| is larger than 
𝑛", the error is too large

• Next, we show how to answer much more 
than 𝑛" counting queries

Differential Privacy
Data Privacy and Security

63

𝛼 ≤ 𝑂
𝑘log	𝑘 : log	(1/𝛿)

𝜀𝑛



SmallDB Mechanism
• Theorem: There exists an 𝜀-DP mechanism 𝐌

such that for all datasets 𝑥 ∈ 𝒳7 w.h.p. 𝐌(𝑥)
answers all queries in 𝒬 to within error

• Moreover, 𝐌(𝑥) outputs a synthetic dataset
𝑦 ∈ 𝒳b with 𝑚 = 𝑂( ⁄log 𝒬 𝛼") s.t. ∀𝑞 ∈ 𝒬
w.h.p. |𝑞 𝑦 − 𝑞(𝑥)| ≤ 𝛼

Differential Privacy
Data Privacy and Security

64

𝛼 ≤ 𝑂
log 𝒳 : log 𝒬

𝜀𝑛

!/X
Can handle ≫ 𝑛!

queries



SmallDB Mechanism
• For each 𝑦 ∈ 𝒳b, let

• Output 𝑦 w.p. ∝ weight: 𝑦 , i.e.

– Exponential mechanism with dataset 𝑥 ∈ 𝒳#, 
objects ℋ = {𝑦 ∈ 𝒳_: 𝑚 = 𝑂 ⁄log 𝒬 𝛼" }, and 
score function 𝑠 𝑥, 𝑦 = −max

C∈𝒬
|𝑞 𝑦 − 𝑞(𝑥)|
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Pr 𝐌 𝑥 = 𝑦 =
weight> 𝑦

∑a∈𝒳%weight> 𝑧

weight> 𝑦 = exp(−𝜀𝑛 : maxC∈𝒬|𝑞 𝑦 − 𝑞(𝑥)|)



SmallDB Mechanism: Privacy & Accuracy
• Corollary: The SmallDB mechanism is 2𝜀-DP

– The proof follows directly from the privacy 
property of the exponential mechanism

• The accuracy proof is more involved
– First, we show there is at least one good small 

dataset 𝑦 ∈ 𝒳_  s.t. |𝑠(𝑥, 𝑦)| ≤ 𝛼
– Then, we show the exponential mechanism 

outputs such a good dataset w.h.p.
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SmallDB Mechanism: Accuracy
• Chernoff bound: For 𝑋!, … , 𝑋b i.i.d. in [0,1]

and 𝑋 = ∑/C!b 𝑋/ with 𝜇 = 𝔼 𝑋

• Let 𝑦∗ be a random sample of 𝑚 rows from 𝑥
– Then 𝑞 𝑦∗ = ∑@)!_ 𝑞(𝑥@) and 𝔼 𝑞 𝑦∗ = 𝑞(𝑥)

• By the union bound, and invoking the 
Chernoff bound with 𝑚 = 𝑂( ⁄log 𝒬 𝛼"): 
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Pr ∃𝑞 ∈ 𝒬	s. t. 𝑞 𝑦∗ − 𝑞 𝑥 > α ≤ 2 𝒬 : 29"_c"

ℙ 𝑋 ≥ 𝜇 + 𝜀 ≤ 𝑒9"_$" and ℙ 𝑋 ≤ 𝜇 − 𝜀 ≤ 𝑒9"_$"



SmallDB Mechanism: Accuracy
• By accuracy of the exponential mechanism 

with ∆𝑠 = 1/𝑛 and ℋ = |𝒳| ⁄T4c 𝒬 e!  
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ℙ ¡

¢

𝑠 𝐌 𝑥,ℋ, 𝑠

≤ 𝑠∗ 𝑥 −
2
𝜀𝑛
:
log 𝒳 : log 𝒬

𝛼"
+ log	(1/𝛽) ≤ 𝛽

⇒ ℙ ¡

¢

max
C∈𝒬

|𝑞 𝑦 − 𝑞(𝑥)|

≥ 𝛼 +
2
𝜀𝑛
:
log 𝒳 : log 𝒬

𝛼"
+ log	(1/𝛽) ≤ 𝛽



SmallDB Mechanism: Accuracy
• By replacing 𝛼 with 𝛼/2 and setting α/2 =
2/(𝜀𝑛) ` fT4c 𝒳 HT4c 𝒬

e!
+ log	(1/𝛽)

• Thus, w.p. at least 1 − 𝛽 the accuracy is:
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ℙ max
C∈𝒬

|𝑞 𝑦 − 𝑞(𝑥)| ≥
𝛼
2
+
𝛼
2
= 𝛼 ≤ 𝛽

𝛼 ≤ 𝑂
log 𝒳 : log 𝒬

𝜀𝑛

!/X



The Downside
• The exponential mechanism can be very 

expensive
– Need to enumerate over all 𝑦 ∈ 𝒴

• Computation time is

– Answering all queries in the family 𝒬12/3(𝑑) with 
error tending to zero requires 𝑛 = 𝜔( ⁄𝑑" 𝜀)
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Ω 𝒴 = Ω(|𝒳|_)
	 = Ω |𝒳|d( ⁄f2g 𝒬 c")



Private Multiplicative Weights
• We now present the state of the art 

mechanism for linear queries
– Query 𝑞:𝒳 → [0,1] instead of 𝑞:𝒳 → {0,1}

– For a dataset 𝑥 ∈ 𝒳#, 𝑞 𝑥 = !
#
∑()!# 𝑞(𝑥()

• Theorem: There is a mechanism that answers 
a set 𝒬 of linear queries on a dataset with 
(𝜀, 𝛿)-DP and accuracy
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𝛼 ≤ 𝑂
log 𝒳 : log 	1/𝛿 : log 𝒬

𝜀𝑛

!/"
Running time WO( 𝒬 1 𝒳 1 𝑛/𝛼!)



Lower Bounds
• So far, we have seen DP mechanisms able to 

answer many queries with good accuracy
• Next, we look at lower bounds essentially 

telling that these algorithms are optimal
• We will consider both

– Information-theoretic lower bounds
– Computational lower bounds
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Blatant Non-Privacy
• A mechanism 𝐌:𝒳7 → 𝒴 is blatantly non-

private if for every 𝑥 ∈ 𝒳7, one can use 𝐌(𝑥)
to compute 𝑥′ ∈ 𝒳7 s.t. 𝑥 and 𝑥′ differ in at 
most 𝑛/10 coordinates w.h.p.
– A very weak privacy notion, ruling out attacks 

that can reconstruct almost all of the dataset
– Exercise: A mechanism that is (1, . 1)-DP cannot 

be blatantly non-private
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Reconstruction Attacks
• Let 𝒳 = {0,1}, so that a dataset of 𝑛 people is 

a vector 𝑥 ∈ {0,1}7

• Consider normalized inner-product queries
𝑞 ∈ {0,1}7, with answer ⁄𝑞, 𝑥 𝑛 ∈ [0,1]
– Bits of 𝑥 are attributes of the 𝑛 members, and 𝑞

specifies a subset of the population according to 
some demographics

– The value ⁄𝑞, 𝑥 𝑛 measures the correlation
between the demographics and the attributes

– Can be transformed into counting queries
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Reconstruction Attacks
• Theorem: If we are given for each 𝑞 ∈ {0,1}7

a value 𝑦Z ∈ ℝ s.t. 𝑦Z − ⁄𝑞, 𝑥 𝑛 ≤ 𝛼, then 
we can use the 𝑦Z 's to compute 𝑥′ differing
from 𝑥 in ≤ 4𝛼 fraction of the coordinates

• Corollary: If 𝐌(𝑥) outputs 𝑦Z as above with 
𝛼 ≤ 1/40, then 𝐌 is blatantly non-private
– Thus, additive error Ω(1) is necessary for 

answering all 2# normalized inner-product queries
– This shows that the error in SmallDB is tight
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Reconstruction Attacks

• Pick any 𝑥′ such that ∀𝑞: 𝑦Z − ⁄𝑞, 𝑥′ 𝑛 ≤ 𝛼
– At least one 𝑥′ exists, namely 𝑥

• Let 𝑞! = 𝑥 and 𝑞J = 𝑥̅
• The Hamming distance between 𝑥, 𝑥′ is: 
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𝑑(𝑥, 𝑥′)
𝑛

=
𝑞6, 𝑥 − 𝑞6, 𝑥′ + 𝑞7, 𝑥 − 𝑞7, 𝑥′

𝑛

≤
𝑞6, 𝑥
𝑛

− 𝑦8% + 𝑦8% −
𝑞6, 𝑥′
𝑛

	+
𝑞7, 𝑥
𝑛

− 𝑦8# + 𝑦8# −
𝑞7, 𝑥′
𝑛

≤ 4 1 𝛼



Reconstruction Attacks
• Dinur and Nissim provided a computationally 

efficient variant of the above attack
• Theorem [DN03]: For every mechanism that 

answers all normalized inner-product queries 
with accuracy 𝑂(𝛼 𝑛), there is an efficient
attacker that reconstructs the dataset in all 
but 𝑂(𝛼") positions by asking 𝑂(𝑛) queries
– This shows that the Laplace and Gaussian 

mechanisms are also tight
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Attacks based on Traitor Tracing
• The smallDB and private multiplicative weight 

mechanisms answer ≫ 𝑛" queries over {0,1}1

– As long as 𝑛 is large compared to 𝑑 (e.g., 𝑛 ≥ 𝑑")

• But the computation time is exponential in 𝑑
• We now show that the above limitation is 

inherent in the worst case
• Proof based on traitor tracing schemes

– Cryptographic tool for preventing piracy of digital 
content (using a broadcast channel)
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Traitor Tracing
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𝑠𝑘!

𝑠𝑘"

𝑠𝑘#

⋮

𝑏𝑘, 𝑡𝑘
𝑐 ←$ 𝐄(𝑏𝑘,𝑚)𝑚 = 𝐃(𝑠𝑘# , 𝑐)

Encrypted signal



The Tracing Algorithm
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𝑠𝑘!

𝑠𝑘"

𝑠𝑘#

⋮

𝑏𝑘, 𝑡𝑘

𝑐!, … , 𝑐<
𝑚!, … ,𝑚<

Some user in the coalition 
can be efficiently traced 

(with high probability) using 
tracing algorithm 𝐓(𝑡𝑘)



Stateless vs Stateful Pirates
• Pirate corrupts any set 𝑆 ⊆ [𝑛] of decoders 

and produces a pirate program  𝐏
• Stateless pirates

– The pirate program 𝐏̈ is given to the tracer
– Useful decryptor: 𝐏̈ decrypts honest ciphertexts

• Stateful pirates
– The tracing algorithm can query 𝐏̈ on (𝑐!, … , 𝑐<)
– Cooperativeness: 𝐏̈ decrypts honest ciphertexts, 

even after receiving malformed ciphertexts
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A Computational Lower Bound
• Theorem: Assuming OWFs, there is a traitor 

tracing scheme secure against stateful but 
cooperative pirates
– Tracing query complexity 𝑘 𝑛, 𝑑 = ª𝑂(𝑛")

• Theorem: Every (1, ⁄1 10𝑛)-DP mechanism 
for answering 𝑘 = 𝑘(𝑛 + 1, 𝑑) counting 
queries within error 𝛼 < 1/2 on datasets with 
𝑛 individuals from 𝒳 = {0,1}1 must run in 
time superpolynomial in 𝑑
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Proof Sketch (1/4)
• Let 𝐌 be as in the statement and setup the 

traitor tracing scheme with 𝑛 + 1 users
• Dataset 𝑥 contains the secret keys 𝑠𝑘M ∈
{0,1}1 of all users but one (chosen at random)

• Counting queries: 𝑞g 𝑠𝑘M = 𝐃 𝑠𝑘M , 𝑐
– Hence, 𝐌(𝑥) yields an ±𝛼 approximation 𝑎 of the 

number of users in 𝑥 whose key decrypts 𝑐 to 1
– If 𝑐 is a valid encryption of 𝑚, then |𝑎 − 𝑚| ≤
𝛼 < 1/2 so that rounding 𝑎 equals 𝑚
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Proof Sketch (2/4)
• Define the pirate to be

– The accuracy of 𝐌 implies that 𝐏̈ cooperates
– Moreover, by postprocessing, 𝐏̈ is DP too

• Next, we show that tracing contradicts DP
• Thus,  𝐏 must not be traceable and hence 

must have superpolynomial running time
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𝐏̈((𝑠𝑘()(∈i , 𝑐!, … , 𝑐<) = ­ ®𝐌(𝑥, 𝑞j& , … , 𝑞j')



Proof Sketch (3/4)
• By traceability of the traitor traicing, w.p. ≈ 1, 

algorithm 𝐓h𝐏( j8" "∈$,H)(𝑡𝑘) outputs  𝑖 ∈ 𝑆
• Thus, for large enough 𝑛, there is an 𝑖∗ s.t.

• Let 𝑆< = 1,… , 𝑛 + 1 \{𝑖∗}; by DP:
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Pr 𝐓k𝐏( ]<! !∈),m) 𝑡𝑘 = 𝑖∗ ≥ 1/2𝑛

Pr 𝐓k𝐏( ]<! !∈),m) 𝑡𝑘 = 𝑖∗

≤ 𝑒 : Pr 𝐓k𝐏( ]<! !∈)# ,m) 𝑡𝑘 = 𝑖∗ + 1/10𝑛



Proof Sketch (4/4)
• Thus,

• Corollary: Assuming OWFs, for every 𝑛 =
poly(𝑑) there is no poly-time (1,1/10𝑛)-DP 
mechanism for answering more than ¦𝑂(𝑛")
queries over 𝒳 = {0,1}1 within 𝛼 < 1/2
– This is tight, as we can accurately answer 𝑘 =
Ω̈(𝑛") counting queries in polynomial time
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Pr 𝐓k𝐏( ]<! !∈)# ,m) 𝑡𝑘 = 𝑖∗

≥ ⁄1 2𝑒𝑛 − ⁄1 10𝑒𝑛 ≥ Ω(1/𝑛)



Simple Traitor Tracing
• Let (𝐄, 𝐃) be any symmetric encryption
• The broadcast key 𝑏𝑘 = (𝑠𝑘!, … , 𝑠𝑘7) consists 

of 𝑛 independent secret keys, and 𝑡𝑘 = 𝑏𝑘
• To encrypt 𝑏 ∈ {0,1}, output

• To decrypt 𝑐 = (𝑐 ! , … , 𝑐(7)) use 𝑠𝑘M
– Suffices to know which portion corresponds to 

the 𝑖-th user
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𝑐 = (𝐄 𝑠𝑘!, 𝑏 , … , 𝐄(𝑠𝑘# , 𝑏))



How to Trace (1/3)
• Tracing exploits ciphertexts that different 

users would decrypt differently

– Note that users 𝑗 ≤ 𝑖 would output 1, but users 
𝑗 > 𝑖 would output 0
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𝐓𝐫𝐄 𝑠𝑘, 𝑖
= (𝐄 𝑠𝑘!, 1 , … , 𝐄 𝑠𝑘( , 1 , 𝐄 𝑠𝑘(:!, 0 , … , 𝐄(𝑠𝑘# , 0))



How to Trace (2/3)
• Consider the matrix below

• Encrypt each column and randomly permute
– I.e., generate random 𝑖!, … , 𝑖< ∈ [0, 𝑛] for 𝑘 =
𝑛 + 1 : 𝑠 s.t. each of [0, 𝑛] appears 𝑠 times

– Then 𝐶 = (𝑐@)@∈[<] with 𝑐@ ←$ 𝐓𝐫𝐄(𝑠𝑘, 𝑖@)
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00…00 11…11 11…11 11…11 11…11
00…00 11…11 11…11

00…00 11…11
…

00…00 00…00 11…11



How to Trace (3/3)
• Next, query  𝐏( 𝑠𝑘M M∈l,`) with (𝑐!, … , 𝑐8) 

obtaining (𝑏!, … , 𝑏8), and compute  

• Output any 𝑖∗ such that 𝑝M∗ − 𝑝M∗P! ≥ 1/𝑛
– Note that if 𝑐 ←$ 𝐓𝐫𝐄(𝑠𝑘, 0), then every user 

would return 𝑏 = 0 (similarly for 𝐓𝐫𝐄(𝑠𝑘, 𝑛))
– Thus, 𝑝; = 0 and 𝑝# = 1 and so there exists 𝑖∗ 

such that 𝑝(∗ − 𝑝(∗9! ≥ 1/𝑛
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∀𝑖 ∈ 0, 𝑛 : 𝑝( =
1
𝑠
:=

@:($)(
𝑏@



Analysis (1/2)
• It remains to show that w.h.p. 𝑖∗ ∈ 𝑆
• Note that 𝐓𝐫𝐄(𝑠𝑘, 𝑖∗) and 𝐓𝐫𝐄(𝑠𝑘, 𝑖∗ − 1) 

differ for the message encrypted under 𝑠𝑘M∗
– And if 𝑖∗ ∉ 𝑆 this key is unknown to the pirate

• By security of encryption, we can replace 𝑘 
repetitions of 𝐄(𝑠𝑘M∗ , 1) with 𝐄(𝑠𝑘M∗ , 0) 
without effecting the success of the pirate
– After this change 𝐓𝐫𝐄(𝑠𝑘, 𝑖∗) and 𝐓𝐫𝐄(𝑠𝑘, 𝑖∗ − 1) 

are identical
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Analysis (2/2)
• Since 𝑖!, … , 𝑖8  are random, the pirate does not 

know which 𝑖/  is 𝑖∗ and which is 𝑖∗ − 1
– Thus, if it wants to make 𝑝(∗  larger than 𝑝(∗9!, for 
𝑖∗ ∉ 𝑆 it can't do better than guessing

• Taking 𝑠 = ¦𝑂(𝑛") and applying Chernoff yields 
that ∀𝑖 ∉ 𝑆 w.h.p. 𝑝M − 𝑝MP! = 𝑜(1/𝑛)

• Note that the query complexity is 𝑘 = ¦𝑂(𝑛m)
– The above can be improved to 𝑘 = ª𝑂(𝑛") by 

using fingerprinting codes
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Hardness of Synthetic Data (1/4)
• Some mechanisms work by producing a 

compact representation of all answers
– This is the case, e.g., of SmallDB

• In the traitor tracing world this corresponds to 
stateless pirates
– If the ciphertext length is ℓ(𝑛, 𝑑), the previous 

proof rules out efficient mechanisms for 
answering families 𝒬 of counting queries of 
description length ℓ(𝑛 + 1, 𝑑) and size 2ℓ(#:!,H)

– Interesting only if ℓ ≪ 𝑛
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Hardness of Synthetic Data (2/4)
• The above applies only to "unnatural" 𝒬
• Towards overcoming this limitation, consider 

the following database using signature (𝐒, 𝐕)
– Choose single sign/verify key pair (𝑣𝑘∗, 𝑠𝑘∗)
– Database made by 𝑛 rows: (𝑚( , 𝐒 𝑠𝑘∗, 𝑚( , 𝑣𝑘∗)

for random messages 𝑚(

– One query for each 𝑣𝑘: What fraction of rows are 
valid signatures w.r.t. 𝑣𝑘 (i.e., 𝑞I< : = 𝐕(𝑣𝑘,:))?
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Hardness of Synthetic Data (3/4)
• Efficient curator cannot generate synthetic 

dataset which is accurate w.r.t. 𝑣𝑘∗

– Let 𝐌 output 𝑥̧ ∈ ({0,1}H) q#

– By accuracy, 𝑥̧ contains 𝑥̧@ = ( ¹𝑚@ , 𝜎̧@) such that 

𝐕 𝑣𝑘∗, ¹𝑚@ , 𝜎̧@ = 1

• If ­𝑚/ ∉ 𝑥, then 𝐌 violates unforgeability
• If ­𝑚/ ∈ 𝑥, then 𝐌 violates differential privacy

– For each 𝑖 ∈ [𝑛], if 𝐌 has (𝜀, 𝛿)-DP it outputs 𝑚(
w.p. ≤ ⁄𝑒$ 2H + 𝛿
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Hardness of Synthetic Data (4/4)
• Finally, it is possible to express the query 
𝐕(𝑣𝑘∗,`) with 2-way conjunctions
– By means of the PCP theorem

• Theorem: Assuming OWFs, there exists 𝛼 > 0
such that there is no 𝑛 = poly 𝑑 and poly-
time (1,1/10𝑛)-DP mechanism that given 
dataset ({0,1}1)7 outputs a synthetic dataset
approximating all the queries in 𝒬34-5" (𝑑) to 
within error at most 𝛼
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Incentives
• Until now the goal was designing differentially 

private mechanisms, but the data is assumed 
to be already there

• But why should someone participate in the 
computation?

• Why would they give their true data?
• Do we need compensation? How much?
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Game Theory and Mechanism Design
• Idea: Solve optimization problem
• Catch: No access to inputs

– Inputs held by self-interested agents

• Design incentives and choice of solution 
(mechanism) that incentivizes truth-telling
– No need for participants to strategize
– Simple to predict what will happen
– Often a non-truth-telling mechanism can be 

replaced by one where the coordinator does the 
lying on behalf of the participants
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Good News
• Composition: Approximate truthfulness still 

satisfied under composition!
• Collusion resistance: 𝑂(𝑘𝜀)-approximate 

dominant strategy, even for coalitions of 𝑘
agents

• Both properties not immediate in game-
theoretic mechanism design

• All done without money!
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Bad News
• But not only truthful reporting gives an 

approximate dominant strategy
– Any report does so, even malicious ones

• How do we actually properly get people to 
truthfully participate?
– Perhaps need compensation
– Much harder to achieve
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Differential Privacy as a Tool
• Nash Equilibrium: An assignment of players to 

strategies so that no player would benefit by 
changing strategy, given how everyone else is 
playing

• Correlated Equilibrium: Players have access to 
correlated signals (e.g., traffic light)
– Every Nash equilibrium is a correlated equilibrium, 

but not viceversa

• Differential privacy has applications to 
mechanism design with correlated equilibria
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The Issue of Verification
• Challenging to strictly incentivize truth-telling

in differentially private mechanisms design
• Exceptions:

– Responses are verifiable
– Agents care about outcome

• Challenge: No observed outcome
– What is the prevalence of drug use?
– Are students cheating in class?
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Privacy and Game Theory
• Asymptotic truthfulness, new mechanisms 

design and equilibrium selection results
• Interesting challenge of modeling costs for 

privacy
• In order to design privacy for humans do we 

need to understand
– How people currently value or should value it?
– What are the right promises to give?
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Not a Panacea
The fundamental law still applies!

Overly accurate estimates of too many 
statistics is blatantly non-private


