DATA PRIVACY AND SECURITY

Prof. Daniele Venturi

Master's Degree in Data Science Sapienza University of Rome

Research Center for Cyber Intelligence and information Security

CHAPTER 5: Differential Privacy

Data Privacy and Security

Data Exploitation

- Availability of lots of data
 - Social networks, financial data, medical records...
- All these data are an asset
 - We would like to **exploit them**

Applications

- Finding statistical correlations
 - Genotype/phenotype association
 - Correlating medical outcomes with risk factors
- Publishing aggregate statistics
- Noticing events/outliers
 Intrusion detection
- Datamining/learning

- Update **strategies** based on customers data

Data Analysis and Privacy

- How to define **privacy**?
 - Intuitively we want that published statistics do not undermine privacy of the individuals
 - After all statistics are just aggregated data about the overall population

The Statistics Masquerade

- Differential attack
 - How many people in the room XYZ last night?
 - How many people, other than the speaker, XYZ last night?
- Needle in a haystack
 - Determine presence of an individual genomic data in GWAS case group based on aggregate stats
- The big bang attack
 - Reconstruct sensitive attributes given statistics from multiple overlapping datasets

NYC Taxicab Data

- 2014: NYC Taxi & Limo Commission sharing visualization on taxi usage statistics on twitter
 - Chris Whong filed a FOIL request and released the dataset publicly online
 - 19 GB with all taxi fares and statistics in 2013
- Attempt to anonymize the data 6B111958A39B24140C973B262EA9FEA5, D3B035A03C8A34DA17488129DA581EE7, ...
 - Someone discovered those were the MD5 hash of the driver's medallion and license number

The Netflix Prize

- 2006-2009: 1M USD for improving the recommendation engine
- Anonymized dataset including movie id, user id, rating and date
- The dataset was de-anonymized by combining it with the public IMDB dataset
 - Matching users that gave **similar** preferences
 - A class action lawsuite was filed against Netflix

Lessons to be Learned

- Privacy is a **concern** when publishing datasets
- Wait: This does not apply to me!
 - Don't make the **entire** dataset available
 - Only publish aggregate statistics
- Even if only data aggregations are published privacy can be broken
- Overly accurate estimates of too many statistics is blatantly non-private

Privacy-Preserving Data Analysis?

- Can't learn **anything new** about Alice?
 - Reminiscent of semantic security for encryption
- Ideally: Learn same thing if Alice is replaced by a random member of the population

Differential Privacy

- Outcome of analysis is roughly equally likely
 - Independent of whether any individual joins, or refrains from joining, the dataset
 - Alice goes away, Bob joins, Alice replaced by Bob
 - Small perturbations do not matter
- Note that instead if we completely change the dataset we get completely different answers!
- Adopted in real-world applications by Apple, Google and Microsoft

Data Privacy and Security

More Formally...

<u>Definition</u>: Mechanism $\mathbf{M}: \mathcal{X}^n \times Q \to \mathcal{Y}$ gives ε **differential privacy** if for all pairs of **adjacent** datasets $x, x' \in \mathcal{X}^n$, and for all queries $q \in Q$: $\forall y \in \mathcal{Y}, \mathbb{P}[\mathbf{M}(x,q) = y] \leq e^{\varepsilon} \cdot \mathbb{P}[\mathbf{M}(x',q) = y]$

Data Privacy and Security

Notes on the Definition

- All that an adversary learns about you, it could have learned from the rest of the dataset
 - Even if you don't participate
 - This doesn't mean nothing about you is leaked
 - Can't use DP to take actions on specific individuals
- Worst-case guarantee
 - For all datasets, against **unbounded** adversaries
- Probability over the randomness of the algorithm, not over the choice of the dataset

Counting Queries

- Simply a **predicate on rows** $q: \mathcal{X} \rightarrow \{0,1\}$
 - Can be extended to datasets \mathcal{X}^n by counting the fraction of people satisfying the predicate, i.e.

$$q(x) = \frac{1}{n} \sum_{i=1}^{n} q(x_i)$$

- Point functions: $Q_{pt}(X) = \{q_y\}_{y \in X}$ s.t. $q_y(w) = 1$ iff w = y
 - Answering all queries in $Q_{\rm pt}(X)$ amounts to computing the **histogram** of the dataset

Counting Queries

- Threshold functions: $Q_{thr}(\mathcal{X}) = \{q_y\}_{y \in \mathcal{X}}$ s.t. $q_y(w) = 1$ iff $w \le y$ (with \mathcal{X} totally ordered)
 - Answering all queries in $Q_{thr}(X)$ amounts to the **cumulative distribution function** of the dataset
- Attribute means: $Q_{\text{means}}(d) = \{q_j\}_{j \in [d]} \text{ s.t.}$ $q_j(w) = w_j$, where $w \in \mathcal{X} = \{0,1\}^d$
 - Answering all queries in $Q_{\text{means}}(d)$ amounts to computing the **fraction** of the dataset possessing each of the *d* attributes (1-way marginal statistics)

Data Privacy and Security

Counting Queries

- Conjunctions: $Q_{conj}^t(d)$ with all conjunctions of $t \in [0, d]$ literals on $\mathcal{X} = \{0, 1\}^d$
 - E.g., $Q_{conj}^2(5)$ contains $q(w) = w_2 \wedge \neg w_4$ (what fraction of individual in the dataset have lug cancer and are non-smokers?)
 - These are called *t*-way marginal
 - Answering all queries in $Q_{conj}^t(d)$ amounts to computing the *t*-way contingency table

Postprocessing

- <u>Theorem</u>: If $\mathbf{M}: \mathcal{X}^n \times Q \to \mathcal{Y}$ is ε -DP, and $\Psi: \mathcal{Y} \to \mathcal{Z}$ is any **randomized function**, then $\Psi \circ \mathbf{M}: \mathcal{X}^n \times Q \to \mathcal{Z}$ is ε -DP
- Let Ψ be a **distribution** on **deterministic** $\psi: \mathcal{Y} \to \mathcal{Z}$. For any $z \in \mathcal{Z}$:

$$\mathbb{P}[(\Psi \circ \mathbf{M})(x) = z]$$

= $\mathbb{E}_{\psi \leftarrow \Psi}[\mathbb{P}[\mathbf{M}(x) = \psi^{-1}(z)]]$
 $\leq \mathbb{E}_{\psi \leftarrow \Psi}[e^{\varepsilon} \cdot \mathbb{P}[\mathbf{M}(x') = \psi^{-1}(z)]]$
= $e^{\varepsilon} \cdot \mathbb{P}[(\Psi \circ \mathbf{M})(x') = z]$

RESEARCH CENTER FOR CYBER INTELLIGENCE AND INFORMATION SECURITY

Group Privacy

- Theorem: If **M** is ε -DP, then for all pairs of datasets $x, x' \in \mathcal{X}^n$, $\mathbf{M}(x)$ and $\mathbf{M}(x')$ are $k\varepsilon$ -DP for k = d(x, x')
 - Here, d(x, x') is the number of rows that **need to be changed** to go from x to x'
 - Let x_{i+1} be obtained from x_i by changing one row $\mathbb{P}[\mathbf{M}(x_0) = y] \leq e^{\varepsilon} \cdot \mathbb{P}[\mathbf{M}(x_1) = y]$ $\leq e^{\varepsilon} \cdot (e^{\varepsilon} \cdot \mathbb{P}[\mathbf{M}(x_2) = y])$ \vdots $\leq e^{k\varepsilon} \cdot \mathbb{P}[\mathbf{M}(x_k) = y]$

Data Privacy and Security

Basic Composition

- Theorem: If $\mathbf{M}_1, \dots, \mathbf{M}_k$ are ε -DP, then \mathbf{M} s.t. $\mathbf{M}(x) = (\mathbf{M}_1(x), \dots, \mathbf{M}_k(x))$ is $k\varepsilon$ -DP
- Fix $x \sim x'$. For $y \in \mathcal{Y}$, define

$$\Lambda_{\mathbf{M}(x)||\mathbf{M}(x')}(y) = \ln\left(\frac{\mathbb{P}[\mathbf{M}(x) = y]}{\mathbb{P}[\mathbf{M}(x') = y]}\right)$$

- When $\Lambda_{\mathbf{M}(x)||\mathbf{M}(x')}(y) > 0$, the outcome y is "evidence" that the dataset is x rather than x'
- Thus, ε -DP means that for all $x \sim x'$, and for all y, $|\Lambda_{\mathbf{M}(x)||\mathbf{M}(x')}(y)| \leq \varepsilon$

Data Privacy and Security

Basic Composition

• In our case:

$$\begin{split} &\Lambda_{\mathbf{M}(x)||\mathbf{M}(x')}(y) \\ &= \ln\left(\frac{\mathbb{P}[\mathbf{M}_{1}(x) = y_{1} \land \dots \land \mathbf{M}_{k}(x) = y_{k}]}{\mathbb{P}[\mathbf{M}_{1}(x') = y_{1} \land \dots \land \mathbf{M}_{k}(x') = y_{k}]}\right) \\ &= \ln\left(\frac{\prod_{i=1}^{k} \mathbb{P}[\mathbf{M}_{i}(x) = y_{i}]}{\prod_{i=1}^{k} \mathbb{P}[\mathbf{M}_{i}(x') = y_{i}]}\right) \\ &= \sum_{i=1}^{k} \Lambda_{\mathbf{M}_{i}(x)||\mathbf{M}_{i}(x')}(y_{i}) \\ &\Rightarrow \left|\Lambda_{\mathbf{M}(x)||\mathbf{M}(x')}(y)\right| \leq \sum_{i=1}^{k} \left|\Lambda_{\mathbf{M}_{i}(x)||\mathbf{M}_{i}(x')}(y_{i})\right| \leq k\varepsilon \end{split}$$

Summary of Properties

Immune to auxiliary information

Current and future side information

Automatically yields group privacy

– Privacy loss $k\varepsilon$ for groups of size k

- Composition
 - Can bound cumulative privacy loss over **multiple** analysis (the epsilons add up)
 - Can combine a few differentially private mechanisms to solve complex analytical tasks

Did You XYZ Last Night?

- Flip a coin
 - If heads, flip again and return YES if heads, and else return NO
 - If tails, answer honestly

• $\frac{\mathbb{P}[\text{YES}|\text{Truth}=\text{YES}]}{\mathbb{P}[\text{YES}|\text{Truth}=\text{NO}]} = \frac{1/2 + 1/2 \cdot (1/2 + 0)}{0 + 1/2 \cdot (1/2)} = 3$ • $\frac{\mathbb{P}[\text{NO}|\text{Truth}=\text{NO}]}{\mathbb{P}[\text{NO}|\text{Truth}=\text{YES}]} = 3$ p = fraction of people that XYZ

- Gives ε -DP for $\varepsilon = \ln 3 \approx 1.098^{\circ}$
- Expected #YES: 1/4(1-p) + 3/4p

Data Privacy and Security

= 2(#YES) - 1/4

Randomized Response: Privacy

- Let $q: \mathcal{X} \to \{0,1\}$ be a **counting query**
- For each row x_i , let $\mathbf{M}(x_i) = q(x_i)$ w.p. $1/2 + \varepsilon$ and $\mathbf{M}(x_i) = \overline{q(x_i)}$ w.p. $1/2 - \varepsilon$
- Consider $\mathbf{M}(x) = \mathbf{M}(x_1, \dots, x_n) = (y_1, \dots, y_n)$ - Assume $x \sim x'$ differ only in the *j*-th row

$$\frac{\mathbb{P}[\mathbf{M}(x) = y]}{\mathbb{P}[\mathbf{M}(x') = y]} = \frac{\prod_{i} \mathbb{P}[\mathbf{M}(x_{i}) = y_{i}]}{\prod_{i} \mathbb{P}[\mathbf{M}(x'_{i}) = y_{i}]}$$
$$= \frac{\mathbb{P}[\mathbf{M}(x_{j}) = y_{j}]}{\mathbb{P}[\mathbf{M}(x'_{j}) = y_{j}]} \le \frac{1/2 + \varepsilon}{1/2 - \varepsilon}$$

Data Privacy and Security

Randomized Response: Accuracy

- The latter is $\leq e^{O(\varepsilon)}$ when, say, $\varepsilon \leq 1/4$ and thus the mechanism **M** has $O(\varepsilon)$ -DP
- As for **accuracy**, note that

$$-\mathbb{E}[y_i] = (1/2 + \varepsilon) \cdot q(x_i) + (1/2 - \varepsilon) \cdot (1 - q(x_i)) = 2\varepsilon \cdot q(x_i) + 1/2 - \varepsilon$$

- Thus, $q(x_i) = 1/(2\varepsilon) \cdot \mathbb{E}[(y_i - 1/2 + \varepsilon)]$

This suggests the following estimator

$$\tilde{y} = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{2\varepsilon} \cdot (y_i - 1/2 + \varepsilon) \right] \mathbb{E}[\tilde{y}] = q(x)$$

Randomized Response: Accuracy

• Next, we analyze the variance

$$- \mathbf{V}[\tilde{y}] = \mathbf{V}\left[\frac{1}{n}\sum_{i=1}^{n}\left[\frac{1}{2\varepsilon}\cdot(y_i - 1/2 + \varepsilon)\right]\right] = \frac{1}{4\varepsilon^2 n^2} \cdot \sum_{i=1}^{n} \mathbf{V}[y_i] \le \frac{1}{4\varepsilon^2 n^2} \cdot n \cdot \frac{1}{4} = \frac{1}{16\varepsilon^2 n}$$

- Finally, by Chebyshev's inequality

$$|\tilde{y} - y| \le O\left(\frac{1}{\sqrt{n} \cdot \varepsilon}\right)$$

- As $n \rightarrow \infty$, we get an **increasingly accurate** estimate of the **result**

Data Privacy and Security

Differential Privacy by Adding Noise

- Let q be a counting query
- Answer with $\mathbf{M}(x) = q(x) + \mathbf{noise}$ - But according to which distribution?
- Note that if $x \sim x'$, then $|q(x) q(x')| \le 1/n$
- At every y, the density of output distribution should be same for x, x' up to a factor e^{ε}
 - Density of $\mathbf{M}(x)$ (resp. $\mathbf{M}(x')$) at y is that of the noise at z = y - q(x) (resp. z = y - q(x')) - Again, $|z - z'| \le 1/n$

Laplace Mechanism: Privacy

- Let $L(\mu, \sigma)$ at z be $1/(2\sigma) \cdot e^{-|z-\mu|/\sigma}$
- If we set $\mu = 0$, $\sigma = 1/\epsilon n$, we have:

$$\frac{\mathbb{P}[\mathbf{M}(x) = y]}{\mathbb{P}[\mathbf{M}(x') = y]} \\
= e^{\frac{|y-q(x')| - |y-q(x)|}{\sigma}} \\
\leq e^{\frac{|q(x)-q(x')|}{\sigma}} \leq e^{\frac{1}{n\sigma}} = e^{\frac{1}{n\sigma}}$$

CIS SAPIENZA RESEARCH CENTER FOR CYBER INTELLIGENCE AND INFORMATION SECURITY

8

27

Laplace Distribution

Data Privacy and Security

CIS SAPIENZA

Differential Privacy

Laplace Mechanism: Accuracy

- Note that $L(0, \sigma)$ has mean 0 and standard deviation $\sqrt{2}\sigma$, and **exponentially vanishing** tails: $\mathbb{P}[|L(0, \sigma)| > \sigma t] \le e^{-t}$
- Hence, for any $0 < \beta \leq 1$:

$$\mathbb{P}[|q(x) - y| > \ln(1/\beta) \cdot 1/(\varepsilon n)] \le \beta$$

- With **high probability** we get error $O(1/(\varepsilon n))$
 - Compare this with accuracy $O(1/\epsilon\sqrt{n})$ of randomized responses

Data Privacy and Security

Laplace Mechanism: Multivariate Case

• Not specific to counting queries

– All we used is that $|q(x) - q(x')| \le 1/n$ for $x \sim x'$

• For arbitrary $q: \mathcal{X}^n \to \mathbb{R}^d$ scale the noise to global ℓ_1 -sensitivity

$$\Delta_1 = \max_{x \sim x'} \|q(x) - q(x')\|_1 = \sum_{i=1}^n |y_i - y'_i|$$

• <u>Theorem</u>: Let $q: \mathcal{X}^n \to \mathbb{R}^d$. The mechanism $\mathbf{M}(x) = q(x) + (z_1, \dots, z_d)$ where each $z_i \leftarrow L(0, \Delta_1/\varepsilon)$ satisfies ε -DP

Data Privacy and Security

Approximate Differential Privacy

Definition: Mechanism $\mathbf{M}: \mathcal{X}^n \times \mathcal{Q} \to \mathcal{Y}$ gives (ε, δ) **differential privacy** if for all pairs of **adjacent** datasets $x, x' \in \mathcal{X}^n$, and for all queries $q \in \mathcal{Q}$: $\forall y \in \mathcal{Y}, \mathbb{P}[\mathbf{M}(x,q) = y] \leq e^{\varepsilon} \cdot \mathbb{P}[\mathbf{M}(x',q) = y] + \delta$

Data Privacy and Security

Benefits of the Relaxation

- Gaussian noise
 - Leading to better accuracy
- Advanced composition

– Can answer k queries with **cumulative** loss $\sqrt{k} \cdot \varepsilon$

– Instead of $k\varepsilon$ as in **pure** differential privacy

 Can use cryptography to simulate trusted center (see a later lecture)

Gaussian Distribution

RESEARCH CENTER FOR CYBER INTELLIGENC AND INFORMATION SECURITY

CIS Sapienza

Gaussian Mechanism

• Let $q: \mathcal{X}^n \to \mathbb{R}^d$. The **global** ℓ_2 -sensitivity is:

$$\Delta_2 = \max_{x \sim x'} \|q(x) - q(x')\|_2 = \sum_{i=1}^n \sqrt{(y_i - y'_i)^2}$$

• <u>Theorem</u>: Let $q: \mathcal{X}^n \to \mathbb{R}^d$. The mechanism $\mathbf{M}(x) = q(x) + (z_1, \dots, z_d)$ where each $z_i \sim N\left(0, \frac{2\ln(1.25/\delta) \cdot \Delta_2^2}{\varepsilon^2}\right)$ satisfies (ε, δ) -DP

Gaussian versus Laplace

- Note that for **every** vector $y \in \mathbb{R}^d$, $||y||_2 \leq ||y||_1 \leq \sqrt{d} \cdot ||y||_2$
- Suppose that $x \in \{0,1\}^{n \times d}$ and take the query $q(x) = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$ for the **multivariate mean**
 - Here, $\Delta_1 \leq d/n$ and $\Delta_2 \leq \sqrt{d}/n$
 - The Laplace mechanism would add noise of magnitude $O(d/n\varepsilon)$ whereas the Gaussian mechanism needs less noise $O(\sqrt{d} \cdot \ln(1/\delta)/n\varepsilon)$ for roughly the same accuracy

Data Privacy and Security

Gaussian Mechanism: Privacy

• We first show that for $\mathbf{M}(x) = q(x) + z$ where $z \leftarrow N(0, \sigma^2 \cdot I)$ the **privacy loss** is distributed as $N\left(\frac{\|q(x)-q(x')\|_2^2}{2\sigma^2}, \frac{\|q(x)-q(x')\|_2^2}{\sigma^2}\right)$ $\ln\left(\frac{\mathbb{P}[\mathbf{M}(x) = q(x) + z]}{\mathbb{P}[\mathbf{M}(x') = q(x) + z]}\right) = \ln\left(\frac{\exp(-\|z\|_{2}^{2}/2\sigma^{2})}{\exp(-\|z + v\|_{2}^{2}/2\sigma^{2})}\right)$ $= -\frac{1}{2\sigma^{2}} \cdot (\|z\|_{2}^{2} - \|z + v\|_{2}^{2})$ $= -\frac{1}{2\sigma^2} \cdot \left(\sum_{j=1}^d \left(z_j^2 - \left(z_j + v_j \right)^2 \right) \right)$

Gaussian Mechanism: Privacy

- Fact: $a \cdot N(0,1) + b \cdot N(0,1) \sim N(0,a^2 + b^2)$
- Simplifying, we get:

$$\ln\left(\frac{\mathbb{P}[\mathbf{M}(x) = q(x) + z]}{\mathbb{P}[\mathbf{M}(x') = q(x) + z]}\right) = \frac{1}{2\sigma^2} \cdot \left(\sum_{j=1}^d (2z_j v_j + v_j^2)\right)$$

- The **constant** term is $\frac{\|v\|_2^2}{2\sigma^2}$ and matches the **mean**
- The other term is $\frac{1}{\sigma^2} \cdot \sum_j z_j v_j = \sum_j z'_j = z'$, where $z'_j \sim N(0, \sigma^2 \cdot v_j^2)$ and $z' \sim N\left(0, \frac{\|v\|_2^2}{\sigma^2}\right)$

Gaussian Mechanism: Privacy

- To finish the proof, we need to show that the **privacy loss** is $\leq \varepsilon$ with **probability** $\geq 1 \delta$
- For $\tilde{z} \sim N(0,1)$ and $\sigma = \Delta_2 \cdot t/\varepsilon$, we can write: $\mathbb{P}\left[\left| \frac{\|q(x) - q(x')\|_2}{2\sigma} \cdot \tilde{z} + \frac{\|q(x) - q(x')\|_2^2}{2\sigma^2} \right| \ge \varepsilon \right]$ $= \mathbb{P}\left[|\tilde{z}| \ge \frac{\varepsilon\sigma}{\|q(x) - q(x')\|_2} - \frac{\|q(x) - q(x')\|_2}{2\sigma} \right]$ $\le \mathbb{P}\left[|\tilde{z}| \ge t - \frac{\varepsilon}{2t} \right]$
 - For simplicity we **drop** the small term $\varepsilon/(2t)$

Gaussian Mechanism: Privacy

- By standard tail bounds $\mathbb{P}[|\tilde{z}| \ge t] \le e^{-t^2/2}$
- If we set $t = \sqrt{2\ln(2/\delta)}$ we obtain that $\mathbb{P}[|\tilde{z}| \ge t] \le \delta$, which implies (ε, δ) -DP
- Note that the latter corresponds roughly to

$$\sigma \approx \frac{\Delta_2}{\varepsilon} \cdot \sqrt{\ln(1/\delta)}$$

Properties of Approximate DP

- **Post processing:** If $\mathbf{M}: \mathcal{X}^n \times \mathcal{Q} \to \mathcal{Y}$ is (ε, δ) -DP, and $F: \mathcal{Y} \to \mathcal{Z}$ is any **randomized function**, then $F \circ \mathbf{M}: \mathcal{X}^n \times \mathcal{Q} \to \mathcal{Z}$ is (ε, δ) -DP
- Group privacy: If **M** is (ε, δ) -DP, then for all pairs of datasets $x, x' \in \mathcal{X}^n$, $\mathbf{M}(x)$ and $\mathbf{M}(x')$ are $(k\varepsilon, k\delta \cdot e^{(k-1)\varepsilon})$ -DP for k = d(x, x')
- Basic composition: If $\mathbf{M}_1, \dots, \mathbf{M}_k$ are (ε, δ) -DP, then \mathbf{M} s.t. $\mathbf{M}(x) = (\mathbf{M}_1(x), \dots, \mathbf{M}_k(x))$ is $(k\varepsilon, k\delta)$ -DP

Advanced Composition

• Theorem: For all $\varepsilon, \delta, \delta' > 0$, if $\mathbf{M}_1, \dots, \mathbf{M}_k$ are (ε, δ) -DP, then $\mathbf{M}(x) = (\mathbf{M}_1(x), \dots, \mathbf{M}_k(x))$ is $(\tilde{\varepsilon}, \tilde{\delta})$ -DP for

$$\tilde{\varepsilon} = \varepsilon \sqrt{2k \cdot \log(1/\delta')} + k\varepsilon \cdot \frac{e^{\varepsilon} - 1}{e^{\varepsilon} + 1}$$
$$\tilde{\delta} = k\delta + \delta'$$

- In the **high-privacy** regime, $(e^{\varepsilon}-1)/(e^{\varepsilon}+1) \approx \varepsilon/2$ and thus we can **ignore** the **second term** in $\tilde{\varepsilon}$
- The above holds even if in the adaptive setting

Data Privacy and Security

Reduction to Binary(ish) Mechanisms

• What is the **simplest** pair of random variables (U, V) satisfying the definition of (ε, δ) -DP?

– I.e., with probability $\geq 1-\delta$

$$\Lambda_{U||V} = \left| \ln \left(\frac{\mathbb{P}[U = v]}{\mathbb{P}[V = v]} \right) \right| \le \varepsilon$$

ν	$\mathbb{P}[U = v]$	$\mathbb{P}[V = v]$	
0	$e^{\varepsilon}(1-\delta)/(1+e^{\varepsilon})$	$(1-\delta)/(1+e^{\varepsilon})$	
1	$(1-\delta)/(1+e^{\varepsilon})$	$e^{\varepsilon}(1-\delta)/(1+e^{\varepsilon})$	
l am U	δ	0	
I am V	0	δ	
		CIS SAPIEN	17

Reduction to Binary(ish) Mechanisms

• Lemma: Let *A* and *B* be s.t. $|\Lambda_{A||B}| \le \varepsilon$ and $|\Lambda_{B||A}| \le \varepsilon$ w.p. $1 - \delta$; there is a **randomized mapping** Ψ s.t. $\Psi(A) \sim U$ and $\Psi(B) \sim V$

Reduction to Binary(ish) Mechanisms

- We can think \mathbf{M}_j takes as input $x \in \mathcal{X}^n$ as well as the **transcript** τ_{j-1} of **previous outputs**
- <u>Corollary</u>: There is a randomized mapping Ψ^* s.t. $\mathbf{M}(x) = (\mathbf{M}_1(x), \dots, \mathbf{M}_k(x))$ satisfies $-\mathbf{M}(x) \sim \Psi^*(U_1, \dots, U_k)$, with $U_1, \dots, U_k \sim U$ $-\mathbf{M}(x') \sim \Psi^*(V_1, \dots, V_k)$, with $V_1, \dots, V_k \sim V$
- By post-processing, it suffices to bound the privacy loss between U₁, ..., U_k and V₁, ..., V_k

- Let $v_j \in \{0, 1, I \text{ am } U\}$ be the *j*-th realization – That is, $v_j \sim U$ Call this event E_1
 - When $v_j = I \text{ am } U$, privacy is violated, but $\mathbb{P}[\exists v_j \text{ s.t. } v_j = I \text{ am } U] = 1 - (1 - \delta)^k \le k\delta$ - Next, we condition on E_1 not happening $(\mathbb{P}[(U - U_i) = u]) = \sum_{k=1}^{k} (\mathbb{P}[U_i = u_i])$

$$\ln\left(\frac{\mathbb{P}[(U_1, \dots, U_k) = v]}{\mathbb{P}[(V_1, \dots, V_k) = v]}\right) = \sum_{j=1}^{\kappa} \ln\left(\frac{\mathbb{P}[U_j = v_j]}{\mathbb{P}[V_j = v_j]}\right)$$
$$\sum_{j=1}^{k} \frac{(1-\delta)e^{\varepsilon(1-v_j)}/(e^{\varepsilon}+1)}{(1-\delta)e^{\varepsilon v_j}/(e^{\varepsilon}+1)} = \sum_{j=1}^{k} \varepsilon(1-2v_j)$$

• Note that (always conditioning on $\overline{E_1}$

$$1 - 2v_j = \begin{cases} 1 \text{ w. p. } e^{\varepsilon} / (1 + e^{\varepsilon}) \\ -1 \text{ w. p. } 1 / (1 + e^{\varepsilon}) \end{cases}$$

• Hence, we can compute the **expectation**

$$\mathbb{E}\left[\ln\left(\frac{\mathbb{P}[(U_1, \dots, U_k) = v]}{\mathbb{P}[(V_1, \dots, V_k) = v]}\right)\right] = k\varepsilon \cdot \frac{e^{\varepsilon} - 1}{e^{\varepsilon} + 1}$$

– Finally, we apply the Chernoff bound in order to prove that the privacy loss does not exceed its expectation with probability more than δ'

 Hoeffding bound: For X₁, ..., X_k i.i.d. and bounded in the range [a, b], we have:

$$\mathbb{P}\left[\sum_{j=1}^{k} X_j \ge \mathbb{E}[X_j] + \gamma\right] \le e^{-\frac{2\gamma^2}{k(b-a)^2}}$$

• Define the event that the privacy loss **goes too far** from its **mean** $\ln \left(\frac{\mathbb{P}[(U_1, \dots, U_k) = v]}{\mathbb{P}[(V_1, \dots, V_k) = v]} \right) > k\varepsilon \cdot \frac{e^{\varepsilon} - 1}{e^{\varepsilon} + 1} + \beta \varepsilon \sqrt{k}$

Data Privacy and Security

- By setting $[a, b] = [-\varepsilon, \varepsilon]$ and $\gamma = \beta \varepsilon \sqrt{k}$ $\mathbb{P}[E_2 | \overline{E_1}] \le e^{-\beta^2/2}$
- Putting it all together using $\beta = \sqrt{2\ln(1/\delta')}$

$$\begin{split} & \mathbb{P}[(U_1, \dots, U_k) = v \wedge \overline{E_1} \wedge \overline{E_2}] \\ & \leq e^{\tilde{\varepsilon}} \cdot \mathbb{P}[(V_1, \dots, V_k) = v \wedge \overline{E_1} \wedge \overline{E_2}] \\ & \leq e^{\tilde{\varepsilon}} \cdot \mathbb{P}[(V_1, \dots, V_k) = v] \end{split}$$

 $\mathbb{P}[U^* = v] = \mathbb{P}[U^* = v \land \overline{E_1} \land \overline{E_2}] + \mathbb{P}[U^* = v \land E_1]$ $+ \mathbb{P}[U^* = v \land \overline{E_1} \land E_2] \leq \mathbb{P}[U^* = v \land \overline{E_1} \land \overline{E_2}] + \mathbb{P}[E_1]$ $+ \mathbb{P}[E_2|\overline{E_1}] \cdot \mathbb{P}[\overline{E_1}]$ $\leq e^{\tilde{\varepsilon}} \cdot \mathbb{P}[V^* = v] + k\delta + e^{-\beta^2/2} \cdot 1$ $e^{\tilde{\varepsilon}} \cdot \mathbb{P}[V^* = v] + k\delta + \delta' = e^{\tilde{\varepsilon}} \cdot \mathbb{P}[V^* = v] + \tilde{\delta}$

Exponential Mechanism

- Until now, we focused on numerical queries
- In some situations, we wish to output **objects**
- Example: **Digital auction**
 - One seller having infinite copies of digital good
 - -n buyers each with valuation v_i
 - What's the price p max. the revenue $\sum_{i:v_i \leq p} p$?
- Idea: Use differential privacy

- If $v_1 = v_2 = 1$ and $v_3 = 3.01$, the revenue drops from 3 to 1.01 increasing p from 1 to 1.01

Exponential Mechanism

- More formally, the mechanism takes as input
 - A dataset $x \in \mathcal{X}^n$, a set of objects \mathcal{H} and a score function $s: \mathcal{X}^n \times \mathcal{H} \to \mathbb{R}$
 - Only the dataset is private
- Define the **sensitivity** of the score function:

$$\Delta s \le \max_{h \in \mathcal{H}} \max_{x, x': x \sim x'} |s(x, h) - s(x', h)|$$

• **Definition:** The **exponential mechanism** outputs $h \in \mathcal{H}$ w.p. $\propto \exp(\varepsilon \cdot s(x, h)/(2\Delta s))$

Data Privacy and Security

Exponential Mechanism: Privacy

 Theorem: The exponential mechanism is εdifferentially private

• Fix any
$$x \sim x'$$
 and $h \in \mathcal{H}$

$$\frac{\mathbb{P}[\mathbf{M}(x,\mathcal{H},s)=y]}{\mathbb{P}[\mathbf{M}(x',\mathcal{H},s)=y]} = \frac{\frac{\exp(\varepsilon \cdot s(x,h)/(2\Delta s))}{\sum_{h'\in\mathcal{H}}\exp(\varepsilon \cdot s(x,h')/(2\Delta s))}}{\frac{\exp(\varepsilon \cdot s(x',h)/(2\Delta s))}{\sum_{h'\in\mathcal{H}}\exp(\varepsilon \cdot s(x',h')/(2\Delta s))}}$$
$$= \exp(\varepsilon \cdot (s(x,h) - s(x',h))/(2\Delta s)) \cdot \frac{\sum_{h'\in\mathcal{H}}\exp(\varepsilon \cdot s(x',h')/(2\Delta s))}{\sum_{h'\in\mathcal{H}}\exp(\varepsilon \cdot s(x,h')/(2\Delta s))}$$
$$\leq \exp(\varepsilon/2) \cdot \frac{\sum_{h'\in\mathcal{H}}\exp(\varepsilon/2) \cdot \exp(\varepsilon \cdot s(x,h')/(2\Delta s))}{\sum_{h'\in\mathcal{H}}\exp(\varepsilon \cdot s(x,h')/(2\Delta s))} = \exp(\varepsilon)$$

Data Privacy and Security

Exponential Mechanism: Accuracy

• Theorem: Let $s^*(x) = \max_{h \in \mathcal{H}} s(x, h)$ and \mathcal{H}^* be the set containing all $h \in \mathcal{H}$ such that $s(x, h) = s^*(x)$. Then:

$$\mathbb{P}\left[s\left(\mathbf{M}(x,\mathcal{H},s)\right) \leq s^{*}(x) - \frac{2\Delta s}{\varepsilon} \cdot \left(\ln\left(\frac{|\mathcal{H}|}{|\mathcal{H}^{*}|}\right) + \beta\right)\right] \leq e^{-\beta}$$

• **Corollary:** Since $|\mathcal{H}^*| \ge 1$, we get

$$\mathbb{P}\left[s\left(\mathbf{M}(x,\mathcal{H},s)\right) \le s^*(x) - \frac{2\Delta s}{\varepsilon} \cdot \left(\ln(|\mathcal{H}|) + \beta\right)\right] \le e^{-\beta}$$

Data Privacy and Security

Exponential Mechanism: Accuracy

• By **definition**:

$$\mathbb{P}\left[s\left(\mathbf{M}(x,\mathcal{H},s)\right) \leq \gamma\right]$$

$$= \frac{\sum_{h \in \mathcal{H}: s(x,h) \leq \gamma} \exp(\varepsilon \cdot s(x,h)/(2\Delta s))}{\sum_{h' \in \mathcal{H}} \exp(\varepsilon \cdot s(x,h')/(2\Delta s))}$$

$$\leq \frac{|\mathcal{H}| \cdot \exp(\varepsilon \gamma/(2\Delta s))}{|\mathcal{H}^*| \cdot \exp(\varepsilon s^*(x,h)/(2\Delta s))}$$

$$= \frac{|\mathcal{H}|}{|\mathcal{H}^*|} \cdot \exp(\varepsilon(\gamma - s^*(x,h))/(2\Delta s))$$

$$-\operatorname{Set} \gamma = s^*(x) - 2\Delta s/\varepsilon \cdot (\ln(|\mathcal{H}|/|\mathcal{H}^*|) + \beta)$$

Data Privacy and Security

Application: Laplace Mechanism

- Let $x \in \mathcal{X}^n$ and $q: \mathcal{X}^n \to \mathbb{R}$ with sensitivity Δ
 - Set x to be the **dataset**, $\mathbb{R} = \mathcal{H}$ be the **objects**, and s(x,h) = -|q(x) - h| be the **score**

$$\mathbb{P}[\mathbf{M}(x,\mathcal{H},s)=h] \propto \exp(\varepsilon \cdot -|q(x)-h|/(2\Delta s))$$

- The latter is identical to the Laplace mechanism up to a factor of 2 (resulting in twice the noise)
- Actually, the factor of 2 can be removed by revisiting the privacy proof

Data Privacy and Security

Application: Selling Digital Goods

- Example: Digital auction
 - One seller having infinite copies of digital good
 - -n buyers each with valuation $v_i \in [0,1]$
 - Price $p \in [0,1]$ maxim. the revenue $p \cdot |i: v_i \le p|$
- We first **discretize** $\mathcal{H} = \{\alpha, 2\alpha, ..., 1\}$ for some α , so that $|\mathcal{H}| = 1/\alpha$
 - Letting $p^* = \max_p p \cdot |i: v_i \le p|$, we get $s^*(v_1, \dots, v_n) \ge p^* - \alpha n$ (round down p to the closest multiple of α , loosing at most αn)

Application: Selling Digital Goods

- Example: Digital auction
 - One seller having infinite copies of digital good
 - -n buyers each with valuation $v_i \in [0,1]$
 - Price $p \in [0,1]$ maxim. the revenue $p \cdot |i: v_i \leq p|$
- We let s(x, p) be **the revenue** $p \cdot |i: v_i \le p|$
 - Since $p \le 1$ and changing **an individual** only affects $|i: v_i \le p|$ by one, $\Delta s \le 1$
 - Thus, s(x, p) is **at least** $p^* \alpha n \ln(1/\alpha)/\varepsilon$ resulting in $p^* - \ln(n)/\varepsilon$ when $\alpha = \ln(n)/(n\varepsilon)$

Probably approximately correct learning

- Concept class $\mathcal{C} = \{c: \{0,1\}^d \rightarrow \{0,1\}\}$

- *n* elements $(x_i, y_i = c^*(x_i))$ for some (unknown) $c^* \in C$, where $x_i \sim D$ (also unknown)

- <u>Goal</u>: Output \hat{c} s.t. $\mathbb{P}_{x \sim D}[\hat{c}(x) \neq c^*(x)]$ is minimized
- Example: Learning halfspaces
 - Classic task in machine learning
 - Intractable with noise

- Theorem: If $n = \Omega(\log(|\mathcal{C}|)/2\alpha^2)$, then there exists \hat{c} s.t. $\mathbb{P}_{x\sim D}[\hat{c}(x) \neq c^*(x)] \leq \alpha/2$
- Get the training data and see how every function in C classifies the dataset

– Output any function $\hat{c} \in \mathcal{C}$ that **never errs**

• Fix $h \in C$, $n = 2t/\alpha^2$. By a **Chernoff bound**:

$$\mathbb{P}_{x_1,...,x_n \sim D}\left[\left|\mathbb{P}_{x \sim D}[h(x) = c^*(x)] - \frac{|i:h(x_i) = c^*(x_i)|}{n}\right| \ge \frac{\alpha}{2}\right] \le e^{-t}$$

– With $t = \Omega(\log(|\mathcal{C}|))$, the above holds $\forall h \in \mathcal{C}$

Data Privacy and Security

• Turning to **differential privacy**, for $x \sim x'$ we have the change of a **single** point (x'_i, y'_i)

- Worst case: x'_i may not follow D and $y'_i \neq c^*(x'_i)$

- Theorem: If $n = \Omega(2\log(|\mathcal{C}|)/\alpha^2 + \log(|\mathcal{C}|)/(4\alpha\varepsilon))$, then \exists an ε -DP algorithm outputting \hat{c} s.t. $\mathbb{P}_{x\sim D}[\hat{c}(x) \neq c^*(x)] \leq \alpha$
- Apply the **exponential mechanism**

- Set $C = \mathcal{H}$ and $s((x, y), h) = -|i: h(x_i) \neq y_i|/n$ - So, $\Delta s = 1/n$ and $s^*((x, y)) = 0$

Data Privacy and Security

$$s((x,y),\hat{c}) \ge -\frac{2\Delta s}{\varepsilon} \cdot \ln(|\mathcal{H}|) = -\frac{2}{\varepsilon n} \cdot \ln(|\mathcal{C}|) \ge -\alpha/2$$

- Thus
$$|i:h(x_i) \neq y_i|/n \leq \alpha/2$$

- Putting the two together: $\mathbb{P}_{x \sim D}[\hat{c}(x) \neq c^*(x)] \leq \alpha/2 + \alpha/2 = \alpha$

Answering Many Queries

- Assume we are given a set Q of k = |Q|queries, and we wish to answer all with ε -DP
 - First add Laplace noise to achieve ε_0 -DP
 - By **basic composition** can set $\varepsilon_0 = \varepsilon/k$ so that the noise per query has scale $O(1/(\varepsilon_0 n)) = O(k/\varepsilon n)$
- The above implies that we can answer all queries in Q with ε-DP to within error

$$\alpha \le O\left(\frac{k \log k}{\varepsilon n}\right) \qquad \text{Setting } \beta = 1/O(k)$$

Data Privacy and Security

Answering Many Queries

 For (ε, δ)-DP, we can use the Gaussian mechanism and advanced composition to get:

$$\alpha \leq O\left(\frac{\sqrt{k \log k \cdot \log \left(1/\delta\right)}}{\varepsilon n}\right)$$

– Thus, we can **accurately** answer k = o(n)

- However, note that whenever |Q| is larger than n^2 , the error is too large
- Next, we show how to answer much more than n^2 counting queries

SmallDB Mechanism

• Theorem: There exists an ε -DP mechanism **M** such that for all datasets $x \in \mathcal{X}^n$ w.h.p. $\mathbf{M}(x)$ answers **all queries** in Q to within error

• Moreover, $\mathbf{M}(x)$ outputs a synthetic dataset $y \in \mathcal{X}^m$ with $m = O(\log |Q|/\alpha^2)$ s.t. $\forall q \in Q$ w.h.p. $|q(y) - q(x)| \le \alpha$

SmallDB Mechanism

• For each $y \in \mathcal{X}^m$, let weight_x(y) = exp($-\varepsilon n \cdot \max_{q \in Q} |q(y) - q(x)|$)

• Output y w.p. \propto weight_x(y), i.e.

$$\Pr[\mathbf{M}(x) = y] = \frac{\operatorname{weight}_{x}(y)}{\sum_{z \in \mathcal{X}^{m}} \operatorname{weight}_{x}(z)}$$

- Exponential mechanism with dataset $x \in \mathcal{X}^n$, objects $\mathcal{H} = \{y \in \mathcal{X}^m : m = O(\log |Q|/\alpha^2)\}$, and score function $s(x, y) = -\max_{q \in Q} |q(y) - q(x)|$

Data Privacy and Security

SmallDB Mechanism: Privacy & Accuracy

- **Corollary:** The SmallDB mechanism is 2ε -DP
 - The proof follows directly from the privacy property of the exponential mechanism
- The **accuracy** proof is more involved
 - First, we show there is at least one **good small** dataset $y \in \mathcal{X}^m$ s.t. $|s(x, y)| \le \alpha$
 - Then, we show the exponential mechanism outputs such a good dataset w.h.p.

SmallDB Mechanism: Accuracy

• Chernoff bound: For $X_1, ..., X_m$ i.i.d. in [0,1] and $X = \sum_{j=1}^m X_j$ with $\mu = \mathbb{E}[X]$

$$\mathbb{P}[X \ge \mu + \varepsilon] \le e^{-2m\varepsilon^2} \text{ and } \mathbb{P}[X \le \mu - \varepsilon] \le e^{-2m\varepsilon^2}$$

- Let y^* be a random sample of m rows from x- Then $q(y^*) = \sum_{j=1}^m q(x_j)$ and $\mathbb{E}[q(y^*)] = q(x)$
- By the **union bound**, and invoking the Chernoff bound with $m = O(\log |Q|/\alpha^2)$:

$$\Pr[\exists q \in Q \text{ s.t. } |q(y^*) - q(x)| > \alpha] \le 2|Q| \cdot 2^{-2m\alpha^2}$$

Data Privacy and Security

SmallDB Mechanism: Accuracy

• By accuracy of the exponential mechanism with $\Delta s = 1/n$ and $|\mathcal{H}| = |\mathcal{X}|^{\log |\mathcal{Q}|/\alpha^2}$

$$\mathbb{P}\left[s\left(\mathbf{M}(x,\mathcal{H},s)\right)\right] \le s^*(x) - \frac{2}{\varepsilon n} \cdot \left(\frac{\log |\mathcal{X}| \cdot \log |\mathcal{Q}|}{\alpha^2} + \log (1/\beta)\right)\right] \le \beta$$
$$\Rightarrow \mathbb{P}\left[\max_{q \in \mathcal{Q}} |q(y) - q(x)|\right]$$
$$\ge \alpha + \frac{2}{\varepsilon n} \cdot \left(\frac{\log |\mathcal{X}| \cdot \log |\mathcal{Q}|}{\alpha^2} + \log (1/\beta)\right)\right] \le \beta$$

SmallDB Mechanism: Accuracy

• By replacing α with $\alpha/2$ and setting $\alpha/2 = 2/(\epsilon n) \cdot \left(\frac{4\log |\mathcal{X}| \cdot \log |\mathcal{Q}|}{\alpha^2} + \log (1/\beta)\right)$

$$\mathbb{P}\left[\max_{q\in\mathcal{Q}}|q(y)-q(x)|\geq\frac{\alpha}{2}+\frac{\alpha}{2}=\alpha\right]\leq\beta$$

• Thus, w.p. at least $1 - \beta$ the accuracy is:

$$\alpha \le O\left(\frac{\log |\mathcal{X}| \cdot \log |\mathcal{Q}|}{\varepsilon n}\right)^{1/3}$$

Data Privacy and Security

The Downside

The exponential mechanism can be very expensive

– Need to enumerate over all $y \in \mathcal{Y}$

• Computation time is

$$\begin{split} \Omega(|\mathcal{Y}|) &= \Omega(|\mathcal{X}|^m) \\ &= \Omega(|\mathcal{X}|^{O(\log |\mathcal{Q}|/\alpha^2)}) \end{split}$$

– Answering all queries in the family $Q_{conj}(d)$ with error tending to zero requires $n = \omega(d^2/\varepsilon)$

Data Privacy and Security

Private Multiplicative Weights

 We now present the state of the art mechanism for linear queries

- Query $q: \mathcal{X} \rightarrow [0,1]$ instead of $q: \mathcal{X} \rightarrow \{0,1\}$

- For a **dataset**
$$x \in \mathcal{X}^n$$
, $q(x) = \frac{1}{n} \sum_{i=1}^n q(x_i)$

• <u>Theorem</u>: There is a mechanism that answers a set Q of linear queries on a dataset with (ε, δ) -DP and accuracy Running time $\tilde{O}(|Q| \cdot |X| \cdot n/\alpha^2)$ $\alpha \leq O\left(\frac{\sqrt{\log |X|} \cdot \log 1/\delta \cdot \log |Q|}{\alpha}\right)^{1/2}$

ЕП

Data Privacy and Security

Lower Bounds

- So far, we have seen DP mechanisms able to answer many queries with good accuracy
- Next, we look at **lower bounds** essentially telling that these algorithms are **optimal**
- We will consider both
 - Information-theoretic lower bounds
 - Computational lower bounds

Blatant Non-Privacy

- A mechanism $\mathbf{M}: \mathcal{X}^n \to \mathcal{Y}$ is blatantly nonprivate if for every $x \in \mathcal{X}^n$, one can use $\mathbf{M}(x)$ to compute $x' \in \mathcal{X}^n$ s.t. x and x' differ in at most n/10 coordinates w.h.p.
 - A very weak privacy notion, ruling out attacks that can reconstruct almost all of the dataset
 - <u>Exercise</u>: A mechanism that is (1, . 1)-DP cannot be blatantly non-private

- Let $\mathcal{X} = \{0,1\}$, so that a dataset of n people is a vector $x \in \{0,1\}^n$
- Consider normalized **inner-product queries** $q \in \{0,1\}^n$, with answer $\langle q, x \rangle / n \in [0,1]$
 - Bits of x are attributes of the n members, and q specifies a subset of the population according to some demographics
 - The value $\langle q, x \rangle / n$ measures the **correlation** between the demographics and the attributes
 - Can be transformed into counting queries

Data Privacy and Security

- <u>Theorem</u>: If we are given for each $q \in \{0,1\}^n$ a value $y_q \in \mathbb{R}$ s.t. $|y_q - \langle q, x \rangle / n| \le \alpha$, then we can use the y_q 's to compute x' differing from x in $\le 4\alpha$ fraction of the coordinates
- Corollary: If $\mathbf{M}(x)$ outputs y_q as above with $\alpha \le 1/40$, then **M** is blatantly non-private
 - Thus, additive error $\Omega(1)$ is **necessary** for answering all 2^n normalized inner-product queries
 - This shows that the error in SmallDB is tight

Data Privacy and Security

- Pick any x' such that $\forall q: |y_q \langle q, x' \rangle / n| \le \alpha$ - At least one x' exists, namely x
- Let $q_1 = x$ and $q_0 = \bar{x}$
- The Hamming distance between x, x' is:

$$\frac{d(x,x')}{n} = \frac{|\langle q_0, x \rangle - \langle q_0, x' \rangle| + |\langle q_1, x \rangle - \langle q_1, x' \rangle|}{n}$$
$$\leq \left| \frac{\langle q_0, x \rangle}{n} - y_{q_0} \right| + \left| y_{q_0} - \frac{\langle q_0, x' \rangle}{n} \right|$$
$$+ \left| \frac{\langle q_1, x \rangle}{n} - y_{q_1} \right| + \left| y_{q_1} - \frac{\langle q_1, x' \rangle}{n} \right| \leq 4 \cdot \alpha$$

- Dinur and Nissim provided a computationally efficient variant of the above attack
- Theorem [DN03]: For every mechanism that answers all normalized inner-product queries with accuracy $O(\alpha\sqrt{n})$, there is an efficient attacker that reconstructs the dataset in all but $O(\alpha^2)$ positions by asking O(n) queries
 - This shows that the Laplace and Gaussian mechanisms are also tight

Data Privacy and Security

Attacks based on Traitor Tracing

- The smallDB and private multiplicative weight mechanisms answer $\gg n^2$ queries over $\{0,1\}^d$

– As long as n is large compared to d (e.g., $n \ge d^2$)

- But the computation time is **exponential** in d
- We now show that the above limitation is inherent in the worst case
- Proof based on traitor tracing schemes
 - Cryptographic tool for preventing piracy of digital content (using a broadcast channel)

Traitor Tracing

Data Privacy and Security

RESEARCH CENTER FOR CYBER INTELLIGENCE AND INFORMATION SECURITY

IS Sapienza

The Tracing Algorithm

Some user in the coalition can be **efficiently traced** (with high probability) using tracing algorithm **T**(*tk*)

 $\underbrace{c_1, \ldots, c_k}_{m_1, \ldots, m_k}$

 sk_1

 sk_2

 sk_n

80

Stateless vs Stateful Pirates

- Pirate corrupts any set S ⊆ [n] of decoders and produces a pirate program P
- Stateless pirates
 - The pirate program $\widetilde{\boldsymbol{P}}$ is given to the tracer
 - <u>Useful decryptor</u>: $\widetilde{\mathbf{P}}$ decrypts honest ciphertexts
- Stateful pirates

81

- The tracing algorithm can query $\widetilde{\mathbf{P}}$ on (c_1, \dots, c_k)
- <u>Cooperativeness</u>: $\widetilde{\mathbf{P}}$ decrypts honest ciphertexts, even after receiving malformed ciphertexts

A Computational Lower Bound

 Theorem: Assuming OWFs, there is a traitor tracing scheme secure against stateful but cooperative pirates

- Tracing query complexity $k(n, d) = \tilde{O}(n^2)$

• Theorem: Every (1, 1/10n)-DP mechanism for answering k = k(n + 1, d) counting queries within error $\alpha < 1/2$ on datasets with n individuals from $\mathcal{X} = \{0,1\}^d$ must run in time superpolynomial in d

Data Privacy and Security

Proof Sketch (1/4)

- Let **M** be as in the statement and setup the traitor tracing scheme with n + 1 users
- Dataset x contains the secret keys $sk_i \in \{0,1\}^d$ of all users but one (chosen at random)
- Counting queries: $q_c(sk_i) = \mathbf{D}(sk_i, c)$
 - Hence, $\mathbf{M}(x)$ yields an $\pm \alpha$ approximation a of the number of users in x whose key decrypts c to 1
 - If c is a valid encryption of m, then $|a m| \le \alpha < 1/2$ so that rounding a equals m

Data Privacy and Security

Proof Sketch (2/4)

• Define the pirate to be

$$\widetilde{\mathbf{P}}((sk_i)_{i\in S}, c_1, \dots, c_k) = \left[\mathbf{M}(x, q_{c_1}, \dots, q_{c_k})\right]$$

- The accuracy of **M** implies that $\widetilde{\mathbf{P}}$ cooperates – Moreover, by **postprocessing**, $\widetilde{\mathbf{P}}$ is DP too
- Next, we show that tracing contradicts DP
- Thus, $\widetilde{\mathbf{P}}$ must not be traceable and hence must have superpolynomial running time

Proof Sketch (3/4)

- By **traceability** of the traitor traicing, w.p. ≈ 1 , algorithm $\mathbf{T}^{\widetilde{\mathbf{P}}((sk_i)_{i \in S}, \cdot)}(tk)$ outputs $i \in S$
- Thus, for large enough n, there is an i^* s.t.

$$\Pr\left[\mathbf{T}^{\widetilde{\mathbf{P}}((sk_i)_{i\in S},\cdot)}(tk)=i^*\right] \ge 1/2n$$

• Let $S' = \{1, ..., n + 1\} \setminus \{i^*\}$; by DP:

$$\Pr\left[\mathbf{T}^{\widetilde{\mathbf{P}}((sk_i)_{i\in S},\cdot)}(tk) = i^*\right]$$

$$\leq e \cdot \Pr\left[\mathbf{T}^{\widetilde{\mathbf{P}}((sk_i)_{i\in S}',\cdot)}(tk) = i^*\right] + 1/10n$$

Data Privacy and Security

Proof Sketch (4/4)

• Thus,

$$\Pr\left[\mathbf{T}^{\widetilde{\mathbf{P}}((sk_i)_{i\in S'},\cdot)}(tk) = i^*\right]$$

$$\geq 1/2en - 1/10en \geq \Omega(1/n)$$

- <u>Corollary</u>: Assuming OWFs, for every n = poly(d) there is no poly-time (1,1/10n)-DP mechanism for answering more than $\tilde{O}(n^2)$ queries over $\mathcal{X} = \{0,1\}^d$ within $\alpha < 1/2$
 - This is **tight**, as we can **accurately** answer $k = \widetilde{\Omega}(n^2)$ counting queries in **polynomial time**

Simple Traitor Tracing

- Let (E, D) be any symmetric encryption
- The broadcast key bk = (sk₁, ..., sk_n) consists of n independent secret keys, and tk = bk
- To encrypt $b \in \{0,1\}$, output

$$c = (\mathbf{E}(sk_1, b), \dots, \mathbf{E}(sk_n, b))$$

- To decrypt $c = (c^{(1)}, \dots, c^{(n)})$ use sk_i
 - Suffices to know which portion corresponds to the *i*-th user

Data Privacy and Security

How to Trace (1/3)

 Tracing exploits ciphertexts that different users would decrypt differently

TrE(sk, i) = (**E** $(sk_1, 1), ...,$ **E** $(sk_i, 1),$ **E** $(sk_{i+1}, 0), ...,$ **E** $(sk_n, 0))$

- Note that users $j \le i$ would output 1, but users j > i would output 0

How to Trace (2/3)

• Consider the matrix below

Encrypt each column and randomly permute

- I.e., generate random $i_1, \dots, i_k \in [0, n]$ for $k = (n + 1) \cdot s$ s.t. each of [0, n] appears s times

- Then $C = (c_j)_{j \in [k]}$ with $c_j \leftarrow_{\$} \mathbf{TrE}(sk, i_j)$

Data Privacy and Security

How to Trace (3/3)

• Next, query $\widetilde{\mathbf{P}}((sk_i)_{i \in S}, \cdot)$ with (c_1, \dots, c_k) obtaining (b_1, \dots, b_k) , and compute

$$\forall i \in [0, n]: p_i = \frac{1}{s} \cdot \sum_{j:i_j=i} b_j$$

- Output any i^* such that $p_{i^*} p_{i^*-1} \ge 1/n$
 - Note that if $c \leftarrow_{\$} \mathbf{TrE}(sk, 0)$, then every user would return b = 0 (similarly for $\mathbf{TrE}(sk, n)$)
 - Thus, $p_0 = 0$ and $p_n = 1$ and so **there exists** i^* such that $p_{i^*} p_{i^*-1} \ge 1/n$

Data Privacy and Security

Analysis (1/2)

- It remains to show that w.h.p. $i^* \in S$
- Note that **TrE**(*sk*, *i**) and **TrE**(*sk*, *i** 1) differ for the message encrypted under *sk*_{*i**}
 And if *i** ∉ *S* this key is **unknown** to the pirate
- By security of encryption, we can replace k repetitions of E(sk_{i*}, 1) with E(sk_{i*}, 0)
 without effecting the success of the pirate
 - After this change **TrE**(*sk*, *i*^{*}) and **TrE**(*sk*, *i*^{*} 1) are **identical**

Data Privacy and Security

Analysis (2/2)

- Since $i_1, ..., i_k$ are **random**, the pirate **does not know** which i_j is i^* and which is $i^* - 1$
 - Thus, if it wants to make p_{i^*} larger than p_{i^*-1} , for $i^* \notin S$ it can't do better than **guessing**
- Taking $s = \tilde{O}(n^2)$ and applying Chernoff yields that $\forall i \notin S$ w.h.p. $p_i - p_{i-1} = o(1/n)$
- Note that the query complexity is $k = \tilde{O}(n^3)$
 - The above can be improved to $k = \tilde{O}(n^2)$ by using **fingerprinting codes**

Data Privacy and Security

Hardness of Synthetic Data (1/4)

 Some mechanisms work by producing a compact representation of all answers

- This is the case, e.g., of SmallDB

- In the traitor tracing world this corresponds to stateless pirates
 - If the ciphertext length is $\ell(n, d)$, the previous proof rules out **efficient** mechanisms for answering families Q of counting queries of description length $\ell(n + 1, d)$ and size $2^{\ell(n+1,d)}$
 - Interesting only if $\ell \ll n$

Data Privacy and Security

Hardness of Synthetic Data (2/4)

- The above applies only to "unnatural" ${\mathcal Q}$
- Towards overcoming this limitation, consider the following database using signature (**S**, **V**)
 - Choose single sign/verify key pair (vk^* , sk^*)
 - Database made by *n* rows: $(m_i, \mathbf{S}(sk^*, m_i), vk^*)$ for random messages m_i
 - One query for each vk: What fraction of rows are valid signatures w.r.t. vk (i.e., $q_{vk}(\cdot) = \mathbf{V}(vk, \cdot)$)?

Hardness of Synthetic Data (3/4)

Efficient curator cannot generate synthetic dataset which is accurate w.r.t. vk*

- Let **M** output
$$\hat{x} \in (\{0,1\}^d)^{\hat{n}}$$

- By accuracy,
$$\hat{x}$$
 contains $\hat{x}_j = (\hat{m}_j, \hat{\sigma}_j)$ such that $\mathbf{V}\left(vk^*, (\hat{m}_j, \hat{\sigma}_j)\right) = 1$

- If $\widehat{m}_j \notin x$, then **M** violates unforgeability
- If $\widehat{m}_j \in x$, then **M** violates differential privacy – For each $i \in [n]$, if **M** has (ε, δ) -DP it outputs m_i w.p. $\leq e^{\varepsilon}/2^d + \delta$

Data Privacy and Security

Hardness of Synthetic Data (4/4)

Finally, it is possible to express the query
 V(vk*,·) with 2-way conjunctions

By means of the PCP theorem

Theorem: Assuming OWFs, there exists α > 0 such that there is no n = poly(d) and polytime (1,1/10n)-DP mechanism that given dataset ({0,1}^d)ⁿ outputs a synthetic dataset approximating all the queries in Q²_{conj}(d) to within error at most α

Data Privacy and Security

Incentives

- Until now the goal was designing differentially private mechanisms, but the data is assumed to be already there
- But why should someone participate in the computation?
- Why would they give their **true data**?
- Do we need **compensation**? How much?

Game Theory and Mechanism Design

- Idea: Solve optimization problem
- Catch: No access to inputs

 Inputs held by self-interested agents
- Design incentives and choice of solution (mechanism) that incentivizes truth-telling
 - No need for participants to strategize
 - Simple to predict what will happen
 - Often a non-truth-telling mechanism can be replaced by one where the coordinator does the lying on behalf of the participants

Good News

- <u>Composition</u>: Approximate truthfulness still satisfied under composition!
- Collusion resistance: O(kε)-approximate dominant strategy, even for coalitions of k agents
- Both properties not immediate in gametheoretic mechanism design
- All done **without money**!

Bad News

 But not only truthful reporting gives an approximate dominant strategy

- Any report does so, even malicious ones

- How do we actually properly get people to truthfully participate?
 - Perhaps need compensation
 - Much harder to achieve

Differential Privacy as a Tool

- Nash Equilibrium: An assignment of players to strategies so that no player would benefit by changing strategy, given how everyone else is playing
- Correlated Equilibrium: Players have access to correlated signals (e.g., traffic light)
 - Every Nash equilibrium is a correlated equilibrium, but not viceversa
- Differential privacy has applications to mechanism design with correlated equilibria

The Issue of Verification

- Challenging to strictly incentivize truth-telling in differentially private mechanisms design
- Exceptions:
 - Responses are verifiable
 - Agents care about outcome
- Challenge: No observed outcome
 - What is the prevalence of drug use?
 - Are students cheating in class?

Privacy and Game Theory

- Asymptotic truthfulness, new mechanisms design and equilibrium selection results
- Interesting challenge of modeling costs for privacy
- In order to design privacy for humans do we need to understand
 - How people currently value or should value it?
 - What are the right promises to give?

The fundamental law still applies!

DEF Milder

 $S = exp(\epsilon) \cdot P = (m(\tau) \in S)$

Overly accurate estimates of too many statistics is **blatantly non-private**