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• Multi-Party Computation (MPC): Protocols 
where the players do not trust each other

• Yet they want to achieve a common goal
– Typically, expressed as a function on the parties’ 

secret inputs (say # of players = 𝑛)

Common goal 
achieved

I don’t 
trust Bob

I don’t 
trust Alice



𝑓(𝑥!, 𝑥") = (1	if	𝑥! > 𝑥"
0	if	𝑥" ≥ 𝑥!

Example: The Millionaires’ Problem
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I am 
richer!

I am 
richer!

𝑥! 𝑥"



𝑦 = (0	w. p. 1/21	w. p. 1/2

Example: Coin Tossing
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I don’t 
trust Alice

𝑦 𝑦
I don’t 

trust Bob



𝑦 = 𝑥! 6 𝑥"

Example: Secure Dating
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𝑦 𝑦

𝑥! = "1	if	Alice	loves	Bob
0	 otherwise

𝑥" = "1	if	Bob	loves	Alice
0	 otherwise



Possible Applications
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• Cloud computing
• Digital auctions
• Online gambling (poker)
• Electronic voting
• …

But do such 
protocols exist?



Ideal and Real World
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• Trivial assuming a trusted third party

𝑥!

𝑦𝑦

𝑥"

𝑥! 𝑥"

Ideal World

Real World

𝑦 𝑦



Every Function can be Computed Securely
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Manuel 
Blum

Andrew 
Yao

Silvio 
Micali

Oded 
Goldreich

Avi 
Widgerson

Every trusted party can be "simulated" in a 
secure manner (under some assumptions)



The Age of Optimism
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80s 90s 00s 10s 20s
PKE
MPC

Invented

PKE PKE
Practical Ubiquitous

MPC

Feasible

MPC MPC

Practical Ubiquitous
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• Consider a secure auction with secret bids
• Attacker may wish to learn the bids
– Require privacy of inputs

• Attacker may wish to win using a bid lower 
than the highest
– Require correctness of the output



Security Requirements (2/4)
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• Attacker may wish to ensure his bid is always 
the highest
– Require independence of inputs

• Attacker may wish to abort the protocol if he 
is not the winner
– Require fairness



Security Requirements (3/4)
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• Privacy: Only the output is revealed
• Correctness: The desidered function is 

computed correctly
• Independence of inputs: Parties can't choose 

inputs based on other parties' inputs



Security Requirements (4/4)
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• Fairness: If one party receives the output, all 
parties receive the output

• Guaranteed output delivery: Corrupted 
parties can't prevent honest parties to receive 
the output



Defining Security (1/2)
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• First option: Define specific properties for 
each scenario
– Auctions: As in previous slide
– Elections: Only privacy, correctness and fairness

• Problem:
– How do we know all possible concerns are 

covered?
– Definitions are application dependent and need to 

be redefined from scratch for each task



Defining Security (2/2)
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• Second option: Have a general definition that 
works for all possible scenarios
– Need well-defined adversarial model and 

execution setting
– Security guarantees are simple to understand



On the Power of the Adversary
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• The adversary can corrupt a subset of players
– Threshold adversary: Corrupts 𝑡 < 𝑛 players
– Monolithic adversary: Single adversary corrupting 

all parties

• Semi-honest vs. malicious
– Semi-honest: Follows the protocol
– Malicious: Behaves arbitrarily

• Non-adaptive vs. adaptive
– Non-adaptive: Identity of corrupted parties fixed 

before the protocol starts



Execution Setting
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• Standalone execution
– Consider only a single execution
– Allows for sequential composition

• Concurrent and universal composition
– Concurrent: Different instances of the same 

protocol are run concurrently
– Universal: Arbitrary protocols are executed 

concurrently

• Universal composability is the true goal
– Allows for arbitrary composition



Security by Simulation
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• Given input and output can generate the 
adversary's view

• Inputs are well defined (semi-honest case)

𝑓 𝑥!, 𝑥" = 𝑓! 𝑥!, 𝑥" , 𝑓" 𝑥!, 𝑥" = (𝑦!, 𝑦")

𝑥! 𝑥"
𝑥", 𝑦"

Adversary's 
output

Simulator's 
output

≈#

𝑓! 𝑥!, 𝑥" 𝑓! 𝑥!, 𝑥"



Properties
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• Correctness, independence of inputs, fairness 
not a concern in the semi-honest model

• What about privacy?
– The attacker's view can be generated given only 

the input and output
– So whatever the adversary has learned he could 

have also learned by talking to the simulator, 
which does not know the honest party's input 

– Without even running the protocol!



Malicious Adversaries 
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• First attempt: Require the existence of a 
simulator as before
– The simulator should simulate the attacker's view 

given the input/output for the malicious party

• Problem: What is the input used by the 
adversary?
– In fact, the input might not even exist!

• Moreover, independence of inputs, 
correctness, and fairness are not implied by 
the ability to simulate the adversary's view



Trusted Third Parties
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• Best option: An incorruptible trusted party
– All players send their inputs to the trusted party 
– The trusted party computes the outputs and gives 

them to the players
– In this sense, this is an ideal world

• What can the adversary do?
– Only change its input

• Security now says that an execution of the real 
protocol should be like in the ideal world



The Real/Ideal Paradigm
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𝑥! 𝑥"

Adversary's 
output

Simulator's 
output

𝑥!

𝑥"#𝑓!
𝑥 !,
𝑥 "
# 	

𝑓" 𝑥
! , 𝑥

" #	

Alice's 
output

𝑓! 𝑥!, 𝑥"# 	

≈#



Properties
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• All properties are satisfied in the ideal world
– Privacy: As before
– Correctness: Because honest parties get the 

correct output
– Independence of inputs: Because the simulator 

does not know the honest party's input
– Fairness: Because the honest party always 

receives the output
– Guaranteed output delivery: Same as fairness



Sequential Composition
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• Secure protocols run sequentially, with 
arbitrary messages in between

• Why is this interesting?
– Helpful tool for analyzing security of protocols

• Formalization: The hybrid model
– Replace each protocol with the corresponding 

ideal functionality
– Real messages (exchanged by the parties)
– Ideal messages (sent to the ideal functionalities)



Universal Composability
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• Sequential composition does not model 
settings (like, e.g., the Internet) where 
protocols are run concurrently
– With different instances of the same protocol and 

other protocols

• Universal composability captures this
– R. Canetti. "Universally Composable Security: A 

New Paradigm for Cryptographic Protocols". 2001
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Coin Tossing

MPC



How to Realize Coin Tossing?
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𝑏!

𝑏"

𝑦 = 𝑏!⊕𝑏" 𝑦 = 𝑏!⊕𝑏"
• But the bits should be sent at the same time
– Otherwise parties can easily cheat
– Seems hard to realize this in the internet



Solution Using Bit Commitments
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Commit to 𝑏!

𝑏"

𝑦 = 𝑏!⊕𝑏" 𝑦 = 𝑏!⊕𝑏"
• Digital commitment satisfies two properties
– Binding: Alice cannot commit to 𝑏 and later open 

the commitment to 𝑏# ≠ 𝑏
– Hiding: The commitment hides 𝑏

𝑏! 𝑏"

Open 𝑏!



Hash-Based Commitments
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• Hash function 𝐇 (modeled as random oracle)
– In practice, could be SHA-256

• To commit to 𝑏 ∈ {0,1}, pick random 𝑟 ∈
{0,1}$  and output 𝐇(𝑏||𝑟)

• To open 𝑏, send (𝑏, 𝑟)
– Hiding: The function's outputs look random
– Binding: Finding (0, 𝑟$) and (1, 𝑟!) such that 
𝐇(0| 𝑟$ = 𝐇(0| 𝑟!  is hard



The Limitations
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• Lack of fairness when there is no honest 
majority (see following slides)
– Partial remedies exist

• No way to force parties to use true inputs and 
to respect the outcome

• We can deal with these problems using 
Bitcoin!
– M. Andrychowicz, S. Dziembowski, D. Malinowski, 

L. Mazurek. "Secure Multiparty Computations on 
Bitcoin." 2014



Problem 1
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Commit to 𝑏!

𝑏"

• Lack of fairness
– Alice can refuse to open the commitment

• Inherent issue in most of the interesting MPC 
protocols

𝑏! 𝑏"

Open 𝑏!



Security with Aborts
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𝑥! 𝑥"#/abort%𝑦"# = 𝑓" 𝑥!, 𝑥"# 	

𝑦"#
𝑦!# = 𝑓! 𝑥!, 𝑥"# 	𝜀/abort%

continue/abort%𝑦!#/abort%

The empty 
string

• The simulator can abort either at the 
beginning, or after seeing the output (before 
the honest party)

• This yields a weaker notion known as security 
with aborts



Problem 2
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• This is the problem of forcing the parties to 
respect the output

• Inherent even in the ideal world specification

Commit to 𝑏!

𝑏"
𝑏! 𝑏"

Open 𝑏!
You lost! So what?!



Main Idea
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Commit to 𝑏!

Commits 
to bit 𝑏!

𝑏"

Transaction "commit":
• Has value 1 BTC
• Can be redeemed by Alice
• Claiming the transaction 

requires revealing  𝑏!

If Alice didn’t redeem 
"commit", I can do it after 

one day!



How to do it?
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• Using the Bitcoin scripting language
• Hash-locked transactions
– Let 𝐇 be a hash function and 𝑌 = 𝐇(𝑋)
– A 𝑌-hash-locked transaction can be redeemed 

only by publishing 𝑋 (in our case 𝑋 = (𝑏!, 𝑟))

Can be spent using Bob’s signature 
and 𝑋 such that 𝑌 = 𝐇(𝑋)

Alice’s 
signature𝑇!

1
BTC𝑇" =



Alice’s Commitment
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Can be spent using Alice’s signature 
and (𝑏!, 𝑟) such that 𝑌 = 𝐇(𝑏!, 𝑟)

or using both Alice's and Bob's 
signatures

Alice’s 
signature𝑇 1

BTC"commit" =

Posted on the blockchakin Earlier transaction of Alice

Send to Bob a "refund" transaction

Can be spent using Bob’s 
signature after one day

Alice’s signature"commit" 1 BTC"refund" =



Solving the Fairness Issue
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Commit to 𝑏! with a 
Bitcoin-based commitment

𝑏"

𝑦 = 𝑏!⊕𝑏" 𝑦 = 𝑏!⊕𝑏"
• If Alice does not open the commitment within 

one day, Bob can get 1BTC by posting the 
"refund" transaction

• Otherwise Alice gets her 1 BTC back

𝑏! 𝑏"

Open 𝑏!



A Commitment Contract in Ethereum

contract Commitment{
bytes32 commitment;
uint timeout; 
address owner;
function commit(bytes32 c) payable {

hash = h;
timeout = now + 10 minutes;
owner = msg.sender;

}
function open (uint d) {

if (sha3(d) == commitment) 
selfdestruct(msg.sender);

}
function refund (){

if (timeout < now)
self-destruct(owner);

}
}

1. Challenger  deposits 
coins 

2. Solver opens 
commitment

3. Refund coins

MPC 39
Data Privacy and Security



Final Result
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• Any two-party stateless functionality can be 
simulated in this way

• The simulation enforces financial 
consequences

• Generalization to multi-party reactive 
functionalities by Kumaresan, Moran, Bentov

• Example: Selling secret information
– Set union plus a money transfer between Alice 

and Bob for each new element that they learned
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Zero Knowledge



Motivating Example: ID Schemes
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• Protocol is not deniable: Signature is a proof 
that someone has talked to the prover

• Can we have a protocol where the verifier 
does not learn anything?

𝑝𝑘𝑝𝑘, 𝑠𝑘

Random message 𝑚

Signature on 𝑚



Interactive Proofs
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• Completeness: Honest prover always 
convinces the verifier

• Soundness: No malicious prover can convince 
the verifier in case 𝑥 ∉ 𝐿

𝑥,𝑤 𝑥

YES/NO

𝑥 ∈ 𝐿 iff
𝑅 𝑥,𝑤 = 1



The Schnorr Protocol 
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• Completeness: 𝑔% = 𝑔&'()* = 𝑔* 4 (𝑔()&

• Soundness: Follows from the DL assumption
• Honest-Verifier Zero-Knowledge: Pick random 
𝛽, 𝛾 such that 𝛼 = 𝑔% 4 𝑥+&

𝑥,𝑤 𝑥

YES iff 𝑔# =
𝛼 ' 𝑥$

𝐿 = {𝑥 = 𝑔$: 𝑤 ∈ ℤ%}

𝛼 = 𝑔&
𝛽 ←$ ℤ%

𝛾 = 𝛽 M 𝑤 + 𝑎



What Can be Proven in Zero Knowledge?
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• Assuming OWFs exist every language in NP!
– O. Goldreich, S. Micali, A. Widgerson. "Proofs that 

yield nothing but their validity." 1986

• The above is achieved by showing a zero-
knowledge proof for an NP-complete 
language
– E.g., 3-coloring or graph Hamiltonicity



Zero Knowledge from FHE
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• Let 𝐿 ∈ 𝑁𝑃 with relation 𝑅
– Consider the circuit 𝑓7,8 𝑤 = 𝑅 𝑥,𝑤

• The above protocol is not sound!
– Can you say why?

𝑐′

𝑝𝑘, 𝑐

𝑥, 𝑤 𝑥 ∈ 𝐿𝑑

(𝑝𝑘, 𝑠𝑘) ←$ 𝐊	(1()
𝑐 ←$ 𝐄 𝑝𝑘,𝑤
𝑑 = 𝐃 𝑠𝑘, 𝑐′

𝑐# ←$
𝐂(𝑝𝑘, 𝑓),+, 𝑐)



Adding Soundness (1/2)
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𝑐′

𝑝𝑘, 𝑐

𝑥, 𝑤 𝑥 ∈ 𝐿

𝛽 ←$ 0,1

𝑐# ←$ ]
𝐂(𝑝𝑘, 𝑓),+, 𝑐)	 if	𝛽 = 1
𝐄 𝑝𝑘, 0 	 if	𝛽 = 0

Check	𝛽 = 𝑑

(𝑝𝑘, 𝑠𝑘) ←$ 𝐊	(1()
𝑐 ←$ 𝐄 𝑝𝑘,𝑤
𝑑 = 𝐃 𝑠𝑘, 𝑐′

𝑑



Adding Soundness (2/2)
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• Soundness follows by the fact that, for 𝑥 ∉ 𝐿, 
both ciphertexts will be encryptions of zero
– Thus, Alice can cheat with probability 1/2

• However, we need to ensure that 𝑝𝑘, 𝑐 are 
well formed
– Alice generates 𝑝𝑘!, 𝑝𝑘" and Bob asks her to 

"open" one at random
– With the other key Alice encrypts 𝑤!, 𝑤" s.t. 𝑤!⊕
𝑤" = 𝑤, and Bob asks her to "open" one of the 
encryptions at random 



Adding Zero Knowledge
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• The previous protocol is only honest-verifier 
zero-knowledge
– In fact, malicious Bob could send to Alice the first 

ciphertext in the vector 𝑐, so that 𝑑 reveals the 
first bit of 𝑤

• This can be fixed using commitments
– Namely, Alice sends a commitment to 𝑑
– Hence, Bob must reveal his randomness in order 

to prove he run the computation as needed
– Finally, Alice opens the commitment revealing 𝑑



The Fiat-Shamir Transformation
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• Non-Interactive zero knowledge
– The proof now consists of a single message

• Security relies on the assumption that hash 
function 𝐇 behaves as a random oracle

𝑥, 𝑤

𝛼

𝑥, 𝑤 𝑥 ∈ 𝐿
𝛽 = 𝐇(𝑥, 𝛼)

𝛾

𝛽 Fiat-Shamir 
Transform 𝜁 = (𝛼, 𝛾)



Applications
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• Suppose 𝑚 = 𝑚!||𝑚" is signed by Bob with 
𝜎 = 𝐒(𝑠𝑘,𝑚) and Alice wants to reveal to 
Carol 𝑚" while keeping 𝑚!, 𝜎 secret
– 𝐿 = {𝑚": ∃𝑚!, 𝜎	s. t. 𝐕 𝑝𝑘,𝑚!||𝑚", 𝜎 = 1}

• Alice holds an ID card signed by some 
authority and wants to prove she is 18 
without revealing her age

• Ubiquitous primitive in advanced 
cryptographic constructions
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Oblivious 
Transfer



Oblivious Transfer
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• Introduced by Rabin in 1981

• Properties
– Sender learns nothing about 𝑏
– Receiver learns nothing about 𝑠!9:

1-out-of-2 OT
𝑠,

𝑠! 𝑠-

𝑏



Why is it Useful?
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• Bob’s output is 1 iff 𝑏 = 𝑏′ = 1 (so it is 
equivalent to computing 𝑏 4 𝑏′)

• Impossible to compute AND with information 
theoretic security (even for passive security)

1-out-of-2 OT
𝑠,

𝑠! 𝑠-

𝑏

𝑠,, 𝑠! = (0, 𝑏′)



Protocol Transcript
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• Transcript 𝑇 is consistent with 𝑥! if there exist 
values 𝑟! and (𝑥", 𝑟") such that 𝑇 is a 
transcript of the protocol with inputs 
– (𝑥!, 𝑟!) for Alice
– (𝑥", 𝑟") for Bob

𝑥!, 𝑟! 𝑥", 𝑟"

Transcript



Suppose 𝒙𝟏 = 0 and 𝒙𝟐 = 0
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𝑥! = 0, 𝑟! 𝑥" = 0, 𝑟"

Transcript

Has to be consistent with 
𝑥! = 1, otherwise malicious 

Bob can learn 𝑥!



Suppose 𝒙𝟏 = 0 and 𝒙𝟐 = 𝟏
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𝑥! = 0, 𝑟! 𝑥" = 1, 𝑟"

Transcript

Cannot be consistent with 𝑥! = 1, 
because the output of the protocol has 

to be different in the following cases
• 𝑥! = 0, 𝑥" = 1
• 𝑥! = 1, 𝑥" = 1



The Attacker
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• Check if 𝑇 is consistent with 𝑥! = 1
– If it is, 𝑥" = 0
– Else, 𝑥" = 1

• Corollary: Any secure protocol for AND must 
rely on computational assumptions

𝑥! = 0, 𝑟! 𝑥", 𝑟"

Transcript



OT with Passive Security
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• Recall the Elgamal PKE
– Ciphertext is 𝑐 = (𝑔; , ℎ; 6 𝑚) for ℎ = 𝑔8

– Oblivious key generation: Can generate ℎ without 
knowing the secret key 𝑥

𝑠,, 𝑠! ℎ- = 𝑔+, 𝑥 , ℎ!.-

ℎ,, ℎ!

𝑐, = (𝑔/! , ℎ,
/! M 𝑠,)

𝑐! = (𝑔/" , ℎ!
/" M 𝑠!)

𝑐,, 𝑐!

Decrypt 𝑐- using 𝑥



OT with Active Security
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• Let (𝐊, 𝐄, 𝐃) be a PKE and (𝐄′, 𝐃′) be an SKE

(𝑝𝑘,, 𝑠𝑘,) 	←$ 𝐊

𝑝𝑘,, 𝑝𝑘!

𝑘, = 𝐃(𝑠𝑘,, 𝑐)

𝑐 ←$ 𝐄(𝑝𝑘-, 𝑘)

Random 𝑘

𝑘! = 𝐃(𝑠𝑘!, 𝑐)

𝑐,# = 𝐄′(𝑘,, 𝑠,), 𝑐!# = 𝐄′(𝑘!, 𝑠!)

𝑠- = 𝐃′(𝑘, 𝑐-# )

𝐛 = 𝟎 𝐛 = 𝟏
𝑘, 𝑘 $$
𝑘! $$ 𝑘

(𝑝𝑘!, 𝑠𝑘!) ←$ 𝐊



Oblivious Transfer for Strings
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• What if the sender inputs (𝑠,, 𝑠!) consist of a 
sequence of strings 𝑠- = 𝑠-!, … , 𝑠-. ?

• Passive case: Just apply basic OT to each 
(𝑠,
/ , 𝑠!

/) separately (with the same 𝑏)
• Active case: It’s more complicated 
– But a generic construction also exists
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Garbled Circuits



Protocols for Arbitrary Functions 
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• We now show how Alice and Bob can 
compute any function securely
– I.e., a general solution for the problem of secure 

two-party computation
– We start with the simpler case of passive security
– Also assume only one party gets the output (we 

will see how to generalize it later)

• Main idea: Represent the function as a 
Boolean circuit
– Recall:  NAND gate is complete



Boolean Circuits
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𝑎! 𝑎" 𝑎% 𝑎& 𝑏! 𝑏" 𝑏% 𝑏&

Bob’s inputsAlice’s inputs

N
AN

D

N
AN

D
N

AN
D

N
AN

D

N
AN

D

0

𝑐! 𝑐" 𝑐% 𝑐& Output

Size = # of gates



High-Level Idea
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• Alice encrypts (garbles) the circuit together 
with her input and sends it to Bob

• Bob adds its own input and evaluates the 
encrypted circuit gate by gate

• The above must be done in such a way that 
the values for the input and internal gates 
remain secret 
– Except for the output gates



Step 1: Key Generation
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𝑥 𝑦

N
AN

D
𝑧

Could be either input 
or internal wires

𝑘'(

𝑘'!
𝑘)(

𝑘)!

𝑘*(

𝑘*!

Random labels (not 
sent to Bob directly)

Repeat for each 
gate in the circuit



Double Encryption (1/2)
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• How to encrypt a message 𝑚 in such a way 
that in order to decrypt it one needs to know 
two keys 𝑘,, 𝑘!?
– Encrypt twice, i.e. 𝐄(𝑘$, 𝐄(𝑘!, 𝑚))

• Special properties
– Elusive range: Hard to generate a valid ciphertext 

without knowing the key 𝑘
– Verifiable range: Given 𝑘, 𝑐 it is easy to test if 𝑐 is 

in the output range of 𝐄(𝑘,6)



Double Encryption (2/2)
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𝐅(𝑘,%)
PRF mapping 𝑛

into 2𝑛 bits

𝑟 ←$ {0,1}= ⊕
𝑥||0=

𝑠

– Elusive range: Hard to find 𝑟 s.t. it is possible to 
predict the last 𝑛 bits of 𝐅(𝑘, 𝑟)

– Verifiable range: Given 𝑘 and (𝑟, 𝑠) can compute 
𝐅(𝑘, 𝑟) and check that the last 𝑛 bits equal the 
last 𝑛 bits of 𝑠

𝑐 = (𝑟, 𝑠)
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𝑥 𝑦

N
AN

D
z

𝑘'(

𝑘'!
𝑘)(

𝑘)!

𝑘*(

𝑘*!

𝒙 𝒚 𝒙	𝐍𝐀𝐍𝐃	𝒚 Garbled Output
0 0 1 𝐄(𝑘"#, 𝐄(𝑘$#, 𝑘%!))

0 1 1 𝐄(𝑘"#, 𝐄(𝑘$!, 𝑘%!))

1 0 1 𝐄(𝑘"!, 𝐄(𝑘$#, 𝑘%!))

1 1 0 𝐄(𝑘"!, 𝐄(𝑘$!, 𝑘%#))

Given 𝑘'+, 𝑘', it is 
possible to decrypt 

only 𝑘*- such that 𝑐 =
𝑎	NAND	𝑏 (all other 
entries yield invalid 

outcome)



Garbling Output Gates
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𝑥 𝑦

N
AN

D
z

𝑘8
$

𝑘8!
𝑘G$

𝑘G!

𝑧 = 0

𝑧 = 1

𝒙 𝒚 𝒙	𝐍𝐀𝐍𝐃	𝒚 Garbled Output
0 0 1 𝐄(𝑘"#, 𝐄(𝑘$#, 1))

0 1 1 𝐄(𝑘"#, 𝐄(𝑘$!, 1))

1 0 1 𝐄(𝑘"!, 𝐄(𝑘$#, 1))

1 1 0 𝐄(𝑘"!, 𝐄(𝑘$!, 0))



Step 3: Sending Garbled Gates
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• For every gate Alice sends the encrypted 
labels in randomly permuted order
– So for each gate Bob knows 4 ciphertexts

𝒙 𝒚 𝒙	𝐍𝐀𝐍𝐃	𝒚 Garbled Output
0 0 1 𝐄(𝑘"#, 𝐄(𝑘$#, 1))

0 1 1 𝐄(𝑘"#, 𝐄(𝑘$!, 1))

1 0 1 𝐄(𝑘"!, 𝐄(𝑘$#, 1))

1 1 0 𝐄(𝑘"!, 𝐄(𝑘$!, 0))

To Bob

𝑐&!

𝑐&'

𝑐&(

𝑐&)



Step 4: Garbled Circuit Evaluation (1/3)
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• Bob needs to evaluate the circuit bottom-up  
to obtain the keys that reveal the output

• To do so, he needs the labels corresponding 
to the inputs
– Recall that part of the input is from Alice and part 

is from Bob

𝑎! 𝑎" 𝑎% 𝑎& 𝑏! 𝑏" 𝑏% 𝑏&

Bob’s inputsAlice’s inputs



Step 4: Garbled Circuit Evaluation (2/3)
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• Alice can simply send the labels  𝑘0
*!  

corresponding to her inputs
– The labels are clearly independent of the inputs

• Moreover, since the gates are permuted Bob 
does not learn whether he received the label 
corresponding to 0 or to 1



Step 4: Garbled Circuit Evaluation (3/3)
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• But how can Bob get the labels corresponding 
to his inputs?
– He cannot reveal the input to Alice
– Alice cannot send both labels, otherwise Bob 

could compute the function on multiple inputs

• Solution: Use 1-out-of-2 OT!

1-out-of-2 OT
𝑘0,

𝑏0
𝑘0!



Yao’s Protocol Overview
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• Garbled circuit 
corresponding to 𝑓

• Labels for 𝑎!, … , 𝑎.

𝑚 times OT for each 
𝑏!, … , 𝑏/

𝑏!, … , 𝑏1𝑎!, … , 𝑎2



What Can Go Wrong?
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𝑏!, … , 𝑏1𝑎!, … , 𝑎2

OT 2nd Message

OT 1st Message

Garbled Circuit

??
?

N
AN

D

N
AN

D

Bad gate

How to ensure that 
the circuit was 

garbled correctly?



Cut & Choose
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OT 2nd Message

OT 1st Message

𝑘 Garbled Circuits
N
AN

D

N
AN

D

N
AN

D

N
AN

D

N
AN

D

N
AN

D
Open 𝑡 circuits

…
Challenge set is 

chosen randomly

Abort if the test 
does not pass



Balls and Bins

MPC
Data Privacy and Security

78

• Say 𝑘 circuits in total, out of which 𝑐 are 
corrupted and 𝑡 are tested by the evaluator

#	of	ways	to	pick	only	good =
𝑘 − 𝑐
𝑡

#	of	ways	to	pick	𝑡 =
𝑘
𝑡

• Probability that garbler succeeds
$+#
.
$
.

=
𝑘/2 4 (𝑘/2 − 1) 4 ⋯ 4 (𝑘/2 − 𝑐)

𝑘 4 (𝑘 − 1) 4 ⋯ 4 (𝑘 − 𝑐)
< 2+#

Setting 𝑡 = 𝑘/2



Consequences
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• The above equation implies that the 
probability that the test passes in case
– 𝑂(𝑘) circuits are corrupted is negligible
– 𝑂(1) circuits are corrupted is noticeable

1
2
−
𝑐
𝑘

#

≤
$+#
.
$
.

< 2+#

Since 3/".53.5 ≥ ⁄3 ".5
3 = !

"−
5
3



First Idea: Aborting
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• Bob evaluates all unopened garbled circuits
• If some of the outputs differ, abort
• Consider the following attack:

𝑘 Garbled Circuits
??
?

??
?

??
?

N
AN

D

N
AN

D

N
AN

D

…
If 𝑏! = 1 output 
𝑓(𝑥!, 𝑥'), else 

output 𝑓 𝑥!, 𝑥' + 1

If 𝑏! = 0 Bob will 
abort with noticeable 

probability (no 
simulator can do that)



Second Idea: Take Majority
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• If some of the outputs differ, define the 
output to be the majority of the outputs

𝑏!, … , 𝑏1𝑎!, … , 𝑎2

OT 2nd Message + 𝑘
garbled circuits

OT 1st Message

Answer challenge

Challenge set of size 𝑡

Majority output



Another Problem
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OT 2nd Message + 𝑘
garbled circuits

OT 1st Message

Answer challenge

Challenge set of size 𝑡
Can’t send the labels 
for Alice’s inputs here

Send them here 
instead!

Majority output



Input Consistency
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OT 2nd Message + 𝑘
garbled circuits

OT 1st Message

Answer challenge + 
𝑘01! , … , 𝑘01ℓ

Challenge set of size 𝑡
Need to evaluate ℓ =
𝑘 − 𝑡 garbled circuits

What if the keys 
do not correspond 
to the same input? Majority output



Input Consistency Attack
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𝑓 𝐴, 𝐵

=<𝑎3 ' 𝑏3

𝑓 𝐴, 𝐵

=<𝑎3 ' 𝑏3

𝑓 𝐴, 𝐵

=<𝑎3 ' 𝑏3

𝑓 𝐴, 𝐵

=<𝑎3 ' 𝑏3

𝐵 𝐵 𝐵 𝐵1000010000100001

𝑏! 𝑏" 𝑏7 𝑏8

Protocol output: 𝐌𝐚𝐣(𝑏!, 𝑏", 𝑏7, 𝑏8)



Need to Prove Input Consistency
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OT 2nd Message + 𝑘
garbled circuits + 𝜋!

OT 1st Message

Answer challenge + 
𝑘01! , … , 𝑘01ℓ + 𝜋"

Challenge set of size 𝑡
Commit to the input 
labels and prove the 

input is the same

Prove these labels 
are consistent with 
the commitment Majority output



Problem: Malicious OT
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OT 2nd Message + 𝑘
garbled circuits + 𝜋!

OT 1st Message

Answer challenge + 
𝑘01! , … , 𝑘01ℓ + 𝜋"

Challenge set of size 𝑡OT protocol must 
be secure against 

malicious 
adversaries

Majority output



Selective Failure Attack
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1-out-of-2 
string OT 𝑏9

𝑘9,0! 0∈[3]

𝑘9,0, 0∈[3]

1-out-of-2 
string OT 𝑏9

0 0∈[3]

𝑘9,0, 0∈[3]

Output is OK if 
𝑏* = 0, and else 

it fails

Bogus keys



OT on Committed Inputs
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𝑘 garbled circuits + 𝜋! + 𝜋"4

OT + 𝜋!4

Answer challenge + 
𝑘01! , … , 𝑘01ℓ + 𝜋"

Challenge set of size 𝑡
OT on committed 

inputsProve consistency 
between input to the 
circuits and in the OT

Majority output



Randomized Functionalities
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• Let 𝑓 𝑥!, 𝑥"  be a randomized functionality
– Write 𝑓 𝑥!, 𝑥"; 𝑟  for a run with randomness 𝑟
– Consider 𝑔 𝑥!, 𝑟! , 𝑥", 𝑟" = 𝑓(𝑥!, 𝑥"; 𝑟!⊕ 𝑟")

• Given a secure protocol for 𝑔 we construct 
secure protocol for 𝑓:
– Alice picks random 𝑟! and Bob picks random 𝑟"
– Alice and Bob run the protocol for 𝑔
– If one party is honest 𝑟 = 𝑟!⊕ 𝑟" is random

• Works both for passive/active security



2-Output Functionalities (Semi-Honest)
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• Let 𝑓 𝑥!, 𝑥" = (𝑓!(𝑥!, 𝑥"), 𝑓"(𝑥!, 𝑥"))
– I.e., Alice and Bob get different outputs

• Given a secure protocol for 1-output functions
– Alice picks random 𝑟!and Bob picks random𝑥"
– Alice and Bob run the protocol for

𝑓> 𝑥?, 𝑟? , 𝑥@, 𝑟@
= 𝑓?(𝑥?, 𝑥@) ⊕ 𝑟?||𝑓@(𝑥?, 𝑥@) ⊕ 𝑟@

– Bob obtains 𝑢||𝑣, sends 𝑢 to Alice and outputs 
𝑣 ⊕ 𝑟"

– Alice outputs 𝑢 ⊕ 𝑟!



2-Output Functionalities (Malicious)
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• Let 𝑓 𝑥!, 𝑥" = (𝑓!(𝑥!, 𝑥"), 𝑓"(𝑥!, 𝑥"))
– Alice picks random 𝑥!, 𝛼, 𝛽
– Alice and Bob run the 1-output protocol for

𝑓# 𝑥!, 𝑟!, 𝛼, 𝛽 , 𝑥" = 𝑐!‖𝑓" 𝑥!, 𝑥" ‖𝛾
𝑐? = 𝑓? 𝑥?, 𝑥@ ⊕ 𝑟?
𝛾 = 𝛼 - 𝑐? + 𝛽

• Bob gets 𝑢||𝑣||𝑤, sends 𝑢||𝑤 to Alice and 
outputs 𝑣

• Alice outputs 𝑢 ⊕ 𝑟! iff 𝑤 = 𝛼 4 𝑢 + 𝛽



Performances
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Protocol Security # Gates Gates/Sec
Fairplay (‘04) HBC 4k 600
C&C (‘08) MAL 1k 4
AES Circuit (‘09) MAL 40k 35
C&C + ZK (‘11) MAL 40k 130
C&C + ZK + Parallel (‘11) MAL 6B 130
C&C + Parallel (‘13) MAL 1B 1M
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MPC with Honest 
Majority



How to Share a Secret?
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• A dealer wants to share a secret 𝑚 between a 
set of parties in such a way that
– Any coalition of 𝑡 parties has zero information 

about 𝑚
– Any set of at least 𝑡 + 1 parties can reconstruct 

the secret 𝑚
– The adversary is passive but all powerful

• The above is called a 𝑡-out-of-𝑛 secret sharing 
scheme



Simple Construction for 𝐭 = 𝑛 − 𝟏
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𝑚 ∈ {0,1}3
𝑠", … , 𝑠2 ←$ {0,1}3

𝑠! = 𝑚⊕ 𝑠"⊕… ⊕ 𝑠2

𝑠! 𝑠"

……

𝑠2

𝑚 = 𝑠!⊕ 𝑠"⊕ … ⊕ 𝑠2



Shamir’s Secret Sharing (1/4)
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𝑚 = 𝑝(0)

𝑠! = 𝑝(1)

𝑠' = 𝑝(2)

𝑠+ = 𝑝(𝑛)

1 2 𝑛…

Degree 𝑡 polynomial

over some field



Shamir’s Secret Sharing (2/4)
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• Sharing
– The dealer chooses a random polynomial 𝑝 𝑋 =
𝑚 + ∑%T!U 𝑎% 6 𝑋%  over some finite field 𝔽, and 
distributes 𝑠% = 𝑝(𝑖) to the 𝑖-th player



Shamir’s Secret Sharing (3/4)
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• Reconstruction
– Given 𝑡 + 1 points 𝑥$, 𝑦$ , … , (𝑥U , 𝑦U) one can 

interpolate the polynomial and recover the secret
– Lagrange interpolation: Define 𝑝 𝑋 =
∑%T$U 𝑦% 6 𝑝%(𝑋) where we let  𝑝%(𝑋) =
∏%VW ⁄(𝑋 − 𝑥W) (𝑥% − 𝑥W) so that 𝑚 = 𝑝 0 =
∑%T$U 𝑦% 6 𝑝%(0)



Shamir’s Secret Sharing (4/4)
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• Privacy
– For any distribution 𝑀, any non-zero 𝑥!, … , 𝑥U ∈
𝔽, and any 𝑦!, … , 𝑦U ∈ 𝔽 we have that once we fix 
𝑝 0 = 𝑎$ = 𝑚 

ℙ 𝑝 𝑥! = 𝑦!, … , 𝑝 𝑥U = 𝑦U|𝑀 = 𝑚 = ⁄1 |𝔽|U



Additive Homomorphism
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1 2 𝑛…

Degree 𝑡

Degree 𝑡

Degree 𝑡

𝑚

𝑚′

𝑚 +𝑚′

𝑝(2)

𝑞(2)

𝑝 2 + 𝑞(2)

𝑝 𝑛 + 𝑞(𝑛)

𝑝(𝑛)

𝑞(𝑛)



More on Secret Sharing
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• Computational secret sharing 
– Computational vs. unconditional security

• General access structures
– Richer sets of authorized players

• Verifiable secret sharing
– Allows to deal with malicious dealers handing 

wrong shares

• Robust and non-malleable secret sharing 
– Malicious players handing wrong shares



Threshold Cryptography
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• Suppose we have a secret key 𝑠𝑘 for a 
signature scheme, but we don’t want to store 
it on a machine

• Solution: 
– Share 𝑠𝑘 within 𝑛 machines 
– Sign in a distributed manner (without ever 

reconstructing 𝑠𝑘)

• Useful in cryptocurrencies to protect users' 
wallets from thefts



From Secret Sharing to MPC
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• We now describe a protocol for computing 
any 𝑛-party functionality

• High-level idea
– We represent the function as an arithmetic circuit
– Each party shares its input with the other parties
– Evaluate the circuit gate by gate (invariant: the 

values of the intermediary gates are shared 
between the parties)

– Reconstruct the output



Arithmetic Circuits
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𝑥! 𝑥" 𝑥% 𝑥& 𝑥5 𝑥6 𝑥7 𝑥8

Inputs from the 𝑛 players

×

×
+

+ +

𝑐

𝑦! 𝑦" 𝑦% 𝑦& Output

Size = # of gates

Multiplication 
gates Addition 

gates



Step 1: Share Inputs
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• Each player secret shares its own input 𝑢 by 
picking a random polynomial 𝑝(𝑋) of degree 
≤ 𝑡 such that 𝑝 0 = 𝑢

• At the end of this phase, each party thus holds 
one share for each of the inputs

𝑢! = 𝑝(1)

𝑢Z = 𝑝(4) 𝑢[ = 𝑝(3)

𝑢" = 𝑝(2)

𝑢, 𝑝(𝑋)



Step 2: Addition Gates (1/2)
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• Given secret sharing 𝑢 = (𝑢!, … , 𝑢1) and 
𝑣 = (𝑣!, … , 𝑣1) we want to compute a 

secret sharing 𝑤  of the output 𝑤 = 𝑢 + 𝑣
• By additive homomorphism each player can 

locally compute 𝑤0 = 𝑢0 + 𝑣0



Step 2: Addition Gates (2/2)
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• Since 𝑢 = (𝑝(1), … , 𝑝(𝑛)) and 𝑣 =
(𝑞(1), … , 𝑞(𝑛)) for random polynomials 𝑝, 𝑞 
s.t. 𝑢 = 𝑝 0  and 𝑣 = 𝑞(0), it also holds that
𝑤 = ((𝑝 + 𝑞)(1), … , (𝑝 + 𝑞)(𝑛)) satisfies 
𝑤 = (𝑝 + 𝑞)(0)

𝑤% = 𝑢% + 𝑣%

+

[𝑢] [𝑣]

[𝑤]



Step 2: Multiplication by a Constant (1/2)
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• Given secret sharing 𝑢 = (𝑢!, … , 𝑢1) we 
want to compute a secret sharing 𝑤  of the 
output 𝑤 = 𝑐 4 𝑢

• By additive homomorphism each player can 
locally compute 𝑤0 = 𝑐 4 𝑢0



Step 2: Multiplication By a Constant (2/2)
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• Since 𝑢 = (𝑝(1), … , 𝑝(𝑛)) for random 
polynomial 𝑝 s.t. 𝑢 = 𝑝 0 , it holds that
𝑤 = (𝑐 4 𝑝(1), … , 𝑐 4 𝑝(𝑛)) satisfies 𝑤 = 𝑐 4
𝑝(0)

𝑤% = 𝑐 6 𝑢%

×

𝑐 [𝑢]

[𝑤]



Step 2: Multiplication Gates (1/6)
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• Given secret sharing 𝑢 = (𝑢!, … , 𝑢1) and 
𝑣 = (𝑣!, … , 𝑣1) we want to compute a 

secret sharing 𝑤  of the output 𝑤 = 𝑢×𝑣
• Each player can locally compute 𝑤0 = 𝑢0×𝑣0



Step 2: Multiplication Gates (2/6)
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• Since 𝑢 = (𝑝(1), … , 𝑝(𝑛)) and 𝑣 =
(𝑞(1), … , 𝑞(𝑛)) for random polynomials 𝑝, 𝑞 
s.t. 𝑢 = 𝑝 0  and 𝑣 = 𝑞(0), it also holds that
𝑤 = ((𝑝×𝑞)(1), … , (𝑝×𝑞)(𝑛)) satisfies 𝑤 =
(𝑝×𝑞)(0)
– Note that the degree of (𝑝×𝑞)(𝑋) is now 2𝑡, but 

as long as 𝑛 > 2𝑡 we can still uniquely reconstruct 
the secret



Step 2: Multiplication Gates (3/6)
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• Unfortunately, after another multiplication the 
degree would become 4𝑡, which is too large if 
we just want to assume honest majority
– To handle this problem, we use a trick to reduce 

the degree



Step 2: Multiplication Gates (4/6)
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• Each party first lets 𝑧 = 𝑢 × 𝑣 =
(𝑧!, … , 𝑧1), and then creates a fresh secret 
sharing of each 𝑧0 = (𝑧0,!, … , 𝑧0,1)
– That is, it picks random 𝑝%(𝑋) of degree ≤ 𝑡 s.t. 
𝑝% 0 = 𝑧%  and 𝑧%,W = 𝑝%(𝑗), and sends 𝑧%,W  to the 
𝑗-th player



Step 2: Multiplication Gates (5/6)
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• Now, let 

• Here 𝛼0  are the lagrange coefficients for the 
reconstruction of 𝑧 = ∑𝛼0 4 𝑧0
– Hence, 𝑤 = (𝑝∗ 1 ,… , 𝑝∗ 𝑛 ) where 𝑝∗(𝑋) =
∑% 𝛼% 6 𝑝% (𝑋) is a degree ≤ 𝑡 polynomial s.t. 
𝑝∗ 0 = ∑% 𝛼% 6 𝑝% 0 = 𝑤

𝑤 =~
%T!

=
𝛼% 6 𝑧%

= ~
%T!

=
𝛼% 6 𝑧%,!, … ,~

%T!

=
𝛼% 6 𝑧%,=



Step 2: Multiplication Gates (6/6)
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𝑤W = 𝑝∗ 𝑗 =~
%
𝛼% 6 𝑝% (𝑗)

×

[𝑢] [𝑣]

[𝑤]



Step 3: Output Reconstruction
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• At the end of the protocol, each player owns a 
share of the output wire [𝑦] which it sends to 
each other player

• Thus, each player can obtain the output



Feasibility of Maliciously Secure MPC
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• Given an MPC protocol secure against passive 
adversaries, can we compile it into an MPC 
protocol secure against active adversaries?

• Main idea:
– Each player behaves as in the semi-honest 

protocol, but also
– Each player proves in zero-knowledge that the 

messages it sends are computed correctly
– O. Goldreich, S. Micali, A. Wigderson. "How to 

play any mental game." 1987



Efficient MPC with Malicious Security
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• I. Damgård, V. Pastro, N. P. Smart, S. Zakarias. 
"Multiparty computation from somewhat 
homomorphic encryption." 2012

• N. Chandran, J. A. Garay, P. Mohassel, S. 
Vusirikala. "Efficient, constant-round and 
actively secure MPC: Beyond the three-party 
case." 2017

• X. Wang, S. Ranellucci, J. Katz: "Global-scale 
secure multiparty computation." 2017
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Blockchain Technology
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• Many applications beyond cryptocurrencies
– Healthcare 
– Identity and Reputation Management
– IoT Devices 
– Smart Grid
– Supply Chain Management
– Post-trade Services (US cash equities)

• HYPE?



Necessity of Hard Forks
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• Resolve human errors
– Accommodate legal and regulatory requirements, 

and address bugs, and mischief

• General Data Protection Regulation (GDPR)
– Privacy violations lead to hefty fines: 4 percent of a 

company’s annual revenue or EUR 20 million

• Smart contracts require flexibility 
– The DAO had $60 million worth of cryptocurrency 

stolen 



Recent Developments (1/3)
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• The "right to be forgotten" 
– A real case has stalled after the European Court of 

Justice found a Dutch man's identity information 
was uploaded on the Bitcoin blockchain

• The Open Data Institute (ODI) Report: 
– "Immutable data storage in blockchains may be 

incompatible with legislation which requires 
changes to the official truth"

– "Even if personal data is not stored on a blockchain, 
metadata can be sufficient to reveal information"



Recent Developments (2/3)
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• The European Union Agency for Network and 
Information Security (ENISA) Report: 
– "Define what to be kept confidential in order to 

remain compliant with regulatory requirements"
– "Identify or develop standard methods for 

removing data from a ledger"



Recent Developments (3/3)
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• The European Securities and Markets Authority 
(ESMA) Report: 
– "The DLT that was originally designed for Bitcoin 

created immutable records, meaning that 
transactions once validated cannot be modified, 
cancelled or revoked" 

– "While this immutability had clear benefits in a 
permissionless DLT framework, it appears ill-suited
to securities markets, e.g., operational errors may 
necessitate the cancellation of some transactions"



An Emergency Lockbox
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𝐵, 𝐵! 𝐵" 𝐵7 …

𝐵, 𝐵! 𝐵" 𝐵7 …

A standard 
blockchain

A redactable 
blockchain

Emergency lockbox



Edit a Block
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𝐵, 𝐵! 𝐵" 𝐵7 …

𝐵!#

𝐵, 𝐵!# 𝐵" 𝐵7 …

Hash collision!



Remove a Block
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𝐵, 𝐵" 𝐵7 …

𝐵!

𝐵, 𝐵" 𝐵7 …

Hash collision!



Chameleon Hashing
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𝑥

𝑥′
𝐇 ℎ

𝑥

𝑥′
𝐇 ℎ

Standard 
hashing

Chameleon 
hashing



Simple Construction (Inadequate)
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• Let 𝔾 be a cyclic group of order 𝑞 with 
generator 𝑔
– E.g., 𝔾 is the subgroup of quadratic residues of ℤ]∗

• Hash key and trapdoor: ℎ𝑘 = 𝑔* and 𝑡𝑘 = 𝑎
• Hash computation: ℎ = 𝑔3 4 ℎ𝑘4 for random 
𝑟 ∈ ℤ5

• Hash collision: Given 𝑚, 𝑟,𝑚′, solve for 𝑎𝑟 +
𝑚 = 𝑎𝑟6 +𝑚6mod	𝑞
– After few collisions the trapdoor is exposed!



Enhanced Collision Resistance

• Hard finding collisions even with access to 
collision oracle
– Collision should be fresh

• Randomness plays the role of "check value"
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𝐇 𝑚$; 𝑟$ = 𝐇 𝑚!; 𝑟!

(ℎ𝑘, 𝑡𝑘)ℎ𝑘

(ℎ, 𝑚, 𝑟 , 𝑚′)

𝑟′𝑡𝑘 𝑚,, 𝑟, , (𝑚!, 𝑟!)

win/lose



Leaving an Immutable Scar
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𝐵, 𝐵! 𝐵" 𝐵7 …

𝐵, 𝐵!# 𝐵" 𝐵7 …

Missing link!



Concluding Remarks (1/2)
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• Geared for "permissioned" systems, not for 
open, decentralized cryptocurrency systems

• Database or spreadsheet? 
– A redactable blockchain is decentralized and 

immutable as all other blockchains
– There is no centralized server and bad actors won't 

be able to make changes

• Only trusted administrators acting on agreed 
rules of governance can edit, rewrite or remove 
blocks without breaking the chain



Concluding Remarks (2/2)
• The key can be divided in shares
– Must be protected as the keys of CAs
– None of the authorities knows the trapdoor
– When needed collisions can be computed via a 

secure distributed protocol (MPC)

• Amending by appending is often pointless
• Storing just the hash does not help since the 

hash provides a "proof of existence"
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Summary
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• Technology developed and patented with 
Accenture

• The blockchain remains decentralized and 
immutable
– But a "plan b" is supported if things go wrong

• The invention preserves blockchain's benefits, 
while making it viable for enterprise use

• Disruptive, breaking a taboo 
– NYT, FT, Forbes, Reuters, Fortune, MIT Tech Review 



Redaction in the Permissionless Setting
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• The previous solution is clearly impractical in 
the permissionless setting

• We now give a more practical solution
– No additional trust assumption
– Consensus on what needs to be redacted
– Publicly verifiable and accountable

• D. Deuber et al. Redactable Blockchain in the 
Permissionless Setting. IEEE S&P 2019 



Redaction Request
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• Modify the block structure 
– Two links instead of one (old link, new link)

• The new block is also sent to a candidate pool 

𝐵, 𝐵! 𝐵" 𝐵7 …

Block 𝐵! contains harmful 
data and should be redacted

𝐵!#

ha
sh

 ℎ



Voting
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• Miners retrieve proposed blocks
• As they know the hash ℎ, each miner can vote

by including ℎ in newly minted blocks
• Voting phase spans an epoch
– 1024 blocks in Bitcoin (2 weeks)

• Policy: Say if 50% of the blocks voted, the 
redaction is approved

𝐵, 𝐵! 𝐵" …
ℎ ℎ



Validating Blocks
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• Standard blocks
– Check PoW, PoS, etc.
– Check validity of data and links (old/new)

• Redacted blocks
– Check PoW, PoS, etc. (w.r.t. old link)
– Check new link broken, old link good
– Check the redaction was approved

𝐵, 𝐵!# 𝐵" 𝐵7



Integration in Bitcoin
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𝐇

𝐇 𝐇

𝐇 𝐇 𝐇 𝐇
𝑇𝑋! 𝑇𝑋" 𝑇𝑋7 𝑇𝑋8 𝑇𝑋A 𝑇𝑋B 𝑇𝑋C 𝑇𝑋D

ℎ,, ℎ,! ℎ!, ℎ!!

ℎ!ℎ,

Prev 
hash SaltTXBlock 

Header

𝐇

Block

TX’

𝑇𝑋"#



Integration in Bitcoin
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Prev 
hash SaltTX’TX

𝑇𝑋! 𝑇𝑋" 𝑇𝑋7 𝑇𝑋8

Prev 
hash SaltTX’TX

𝑇𝑋!
𝐻(𝑇𝑋")

𝑇𝑋7 𝑇𝑋8𝑇𝑋"#

• Old link is 𝐻(𝑝𝑟𝑒𝑣_ℎ𝑎𝑠ℎ, 𝑇𝑋, 𝑇𝑌, 𝑠𝑎𝑙𝑡)
– 𝑇𝑌 is from the previous block header

• New link is 𝐻(𝑝𝑟𝑒𝑣_ℎ𝑎𝑠ℎ, 𝑇𝑋′, 𝑇𝑌, 𝑠𝑎𝑙𝑡)


