
DATA PRIVACY
AND SECURITY

Master's Degree in Data Science
Sapienza University of Rome

Prof. Daniele Venturi

Data Privacy and Security
2MPC

CHAPTER 8:
Multi-Party
Computation

MPC Protocols

MPC
Data Privacy and Security

3

• Multi-Party Computation (MPC): Protocols
where the players do not trust each other

• Yet they want to achieve a common goal
– Typically, expressed as a function on the parties’

secret inputs (say # of players = 𝑛)

Common goal
achieved

I don’t
trust Bob

I don’t
trust Alice

𝑓(𝑥!, 𝑥") = (1	if	𝑥! > 𝑥"
0	if	𝑥" ≥ 𝑥!

Example: The Millionaires’ Problem

MPC
Data Privacy and Security

4

I am
richer!

I am
richer!

𝑥! 𝑥"

𝑦 = (0	w. p. 1/21	w. p. 1/2

Example: Coin Tossing

MPC
Data Privacy and Security

5

I don’t
trust Alice

𝑦 𝑦
I don’t

trust Bob

𝑦 = 𝑥! 6 𝑥"

Example: Secure Dating

MPC
Data Privacy and Security

6

𝑦 𝑦

𝑥! = "1	if	Alice	loves	Bob
0	 otherwise

𝑥" = "1	if	Bob	loves	Alice
0	 otherwise

Possible Applications

MPC
Data Privacy and Security

7

• Cloud computing
• Digital auctions
• Online gambling (poker)
• Electronic voting
• …

But do such
protocols exist?

Ideal and Real World

MPC
Data Privacy and Security

8

• Trivial assuming a trusted third party

𝑥!

𝑦𝑦

𝑥"

𝑥! 𝑥"

Ideal World

Real World

𝑦 𝑦

Every Function can be Computed Securely

MPC
Data Privacy and Security

9

Manuel
Blum

Andrew
Yao

Silvio
Micali

Oded
Goldreich

Avi
Widgerson

Every trusted party can be "simulated" in a
secure manner (under some assumptions)

The Age of Optimism

MPC
Data Privacy and Security

10

80s 90s 00s 10s 20s
PKE
MPC

Invented

PKE PKE
Practical Ubiquitous

MPC

Feasible

MPC MPC

Practical Ubiquitous

Security Requirements (1/4)

MPC
Data Privacy and Security

11

• Consider a secure auction with secret bids
• Attacker may wish to learn the bids
– Require privacy of inputs

• Attacker may wish to win using a bid lower
than the highest
– Require correctness of the output

Security Requirements (2/4)

MPC
Data Privacy and Security

12

• Attacker may wish to ensure his bid is always
the highest
– Require independence of inputs

• Attacker may wish to abort the protocol if he
is not the winner
– Require fairness

Security Requirements (3/4)

MPC
Data Privacy and Security

13

• Privacy: Only the output is revealed
• Correctness: The desidered function is

computed correctly
• Independence of inputs: Parties can't choose

inputs based on other parties' inputs

Security Requirements (4/4)

MPC
Data Privacy and Security

14

• Fairness: If one party receives the output, all
parties receive the output

• Guaranteed output delivery: Corrupted
parties can't prevent honest parties to receive
the output

Defining Security (1/2)

MPC
Data Privacy and Security

15

• First option: Define specific properties for
each scenario
– Auctions: As in previous slide
– Elections: Only privacy, correctness and fairness

• Problem:
– How do we know all possible concerns are

covered?
– Definitions are application dependent and need to

be redefined from scratch for each task

Defining Security (2/2)

MPC
Data Privacy and Security

16

• Second option: Have a general definition that
works for all possible scenarios
– Need well-defined adversarial model and

execution setting
– Security guarantees are simple to understand

On the Power of the Adversary

MPC
Data Privacy and Security

17

• The adversary can corrupt a subset of players
– Threshold adversary: Corrupts 𝑡 < 𝑛 players
– Monolithic adversary: Single adversary corrupting

all parties

• Semi-honest vs. malicious
– Semi-honest: Follows the protocol
– Malicious: Behaves arbitrarily

• Non-adaptive vs. adaptive
– Non-adaptive: Identity of corrupted parties fixed

before the protocol starts

Execution Setting

MPC
Data Privacy and Security

18

• Standalone execution
– Consider only a single execution
– Allows for sequential composition

• Concurrent and universal composition
– Concurrent: Different instances of the same

protocol are run concurrently
– Universal: Arbitrary protocols are executed

concurrently

• Universal composability is the true goal
– Allows for arbitrary composition

Security by Simulation

MPC
Data Privacy and Security

19

• Given input and output can generate the
adversary's view

• Inputs are well defined (semi-honest case)

𝑓 𝑥!, 𝑥" = 𝑓! 𝑥!, 𝑥" , 𝑓" 𝑥!, 𝑥" = (𝑦!, 𝑦")

𝑥! 𝑥"
𝑥", 𝑦"

Adversary's
output

Simulator's
output

≈#

𝑓! 𝑥!, 𝑥" 𝑓! 𝑥!, 𝑥"

Properties

MPC
Data Privacy and Security

20

• Correctness, independence of inputs, fairness
not a concern in the semi-honest model

• What about privacy?
– The attacker's view can be generated given only

the input and output
– So whatever the adversary has learned he could

have also learned by talking to the simulator,
which does not know the honest party's input

– Without even running the protocol!

Malicious Adversaries

MPC
Data Privacy and Security

21

• First attempt: Require the existence of a
simulator as before
– The simulator should simulate the attacker's view

given the input/output for the malicious party

• Problem: What is the input used by the
adversary?
– In fact, the input might not even exist!

• Moreover, independence of inputs,
correctness, and fairness are not implied by
the ability to simulate the adversary's view

Trusted Third Parties

MPC
Data Privacy and Security

22

• Best option: An incorruptible trusted party
– All players send their inputs to the trusted party
– The trusted party computes the outputs and gives

them to the players
– In this sense, this is an ideal world

• What can the adversary do?
– Only change its input

• Security now says that an execution of the real
protocol should be like in the ideal world

The Real/Ideal Paradigm

MPC
Data Privacy and Security

23

𝑥! 𝑥"

Adversary's
output

Simulator's
output

𝑥!

𝑥"#𝑓!
𝑥 !,
𝑥 "
# 	

𝑓" 𝑥
! , 𝑥

" #	

Alice's
output

𝑓! 𝑥!, 𝑥"# 	

≈#

Properties

MPC
Data Privacy and Security

24

• All properties are satisfied in the ideal world
– Privacy: As before
– Correctness: Because honest parties get the

correct output
– Independence of inputs: Because the simulator

does not know the honest party's input
– Fairness: Because the honest party always

receives the output
– Guaranteed output delivery: Same as fairness

Sequential Composition

MPC
Data Privacy and Security

25

• Secure protocols run sequentially, with
arbitrary messages in between

• Why is this interesting?
– Helpful tool for analyzing security of protocols

• Formalization: The hybrid model
– Replace each protocol with the corresponding

ideal functionality
– Real messages (exchanged by the parties)
– Ideal messages (sent to the ideal functionalities)

Universal Composability

MPC
Data Privacy and Security

26

• Sequential composition does not model
settings (like, e.g., the Internet) where
protocols are run concurrently
– With different instances of the same protocol and

other protocols

• Universal composability captures this
– R. Canetti. "Universally Composable Security: A

New Paradigm for Cryptographic Protocols". 2001

Data Privacy and Security
27

Coin Tossing

MPC

How to Realize Coin Tossing?

MPC
Data Privacy and Security

28

𝑏!

𝑏"

𝑦 = 𝑏!⊕𝑏" 𝑦 = 𝑏!⊕𝑏"
• But the bits should be sent at the same time
– Otherwise parties can easily cheat
– Seems hard to realize this in the internet

Solution Using Bit Commitments

MPC
Data Privacy and Security

29

Commit to 𝑏!

𝑏"

𝑦 = 𝑏!⊕𝑏" 𝑦 = 𝑏!⊕𝑏"
• Digital commitment satisfies two properties
– Binding: Alice cannot commit to 𝑏 and later open

the commitment to 𝑏# ≠ 𝑏
– Hiding: The commitment hides 𝑏

𝑏! 𝑏"

Open 𝑏!

Hash-Based Commitments

MPC
Data Privacy and Security

30

• Hash function 𝐇 (modeled as random oracle)
– In practice, could be SHA-256

• To commit to 𝑏 ∈ {0,1}, pick random 𝑟 ∈
{0,1}$ and output 𝐇(𝑏||𝑟)

• To open 𝑏, send (𝑏, 𝑟)
– Hiding: The function's outputs look random
– Binding: Finding (0, 𝑟$) and (1, 𝑟!) such that
𝐇(0| 𝑟$ = 𝐇(0| 𝑟! is hard

The Limitations

MPC
Data Privacy and Security

31

• Lack of fairness when there is no honest
majority (see following slides)
– Partial remedies exist

• No way to force parties to use true inputs and
to respect the outcome

• We can deal with these problems using
Bitcoin!
– M. Andrychowicz, S. Dziembowski, D. Malinowski,

L. Mazurek. "Secure Multiparty Computations on
Bitcoin." 2014

Problem 1

MPC
Data Privacy and Security

32

Commit to 𝑏!

𝑏"

• Lack of fairness
– Alice can refuse to open the commitment

• Inherent issue in most of the interesting MPC
protocols

𝑏! 𝑏"

Open 𝑏!

Security with Aborts

MPC
Data Privacy and Security

33

𝑥! 𝑥"#/abort%𝑦"# = 𝑓" 𝑥!, 𝑥"# 	

𝑦"#
𝑦!# = 𝑓! 𝑥!, 𝑥"# 	𝜀/abort%

continue/abort%𝑦!#/abort%

The empty
string

• The simulator can abort either at the
beginning, or after seeing the output (before
the honest party)

• This yields a weaker notion known as security
with aborts

Problem 2

MPC
Data Privacy and Security

34

• This is the problem of forcing the parties to
respect the output

• Inherent even in the ideal world specification

Commit to 𝑏!

𝑏"
𝑏! 𝑏"

Open 𝑏!
You lost! So what?!

Main Idea

MPC
Data Privacy and Security

35

Commit to 𝑏!

Commits
to bit 𝑏!

𝑏"

Transaction "commit":
• Has value 1 BTC
• Can be redeemed by Alice
• Claiming the transaction

requires revealing 𝑏!

If Alice didn’t redeem
"commit", I can do it after

one day!

How to do it?

MPC
Data Privacy and Security

36

• Using the Bitcoin scripting language
• Hash-locked transactions
– Let 𝐇 be a hash function and 𝑌 = 𝐇(𝑋)
– A 𝑌-hash-locked transaction can be redeemed

only by publishing 𝑋 (in our case 𝑋 = (𝑏!, 𝑟))

Can be spent using Bob’s signature
and 𝑋 such that 𝑌 = 𝐇(𝑋)

Alice’s
signature𝑇!

1
BTC𝑇" =

Alice’s Commitment

MPC
Data Privacy and Security

37

Can be spent using Alice’s signature
and (𝑏!, 𝑟) such that 𝑌 = 𝐇(𝑏!, 𝑟)

or using both Alice's and Bob's
signatures

Alice’s
signature𝑇 1

BTC"commit" =

Posted on the blockchakin Earlier transaction of Alice

Send to Bob a "refund" transaction

Can be spent using Bob’s
signature after one day

Alice’s signature"commit" 1 BTC"refund" =

Solving the Fairness Issue

MPC
Data Privacy and Security

38

Commit to 𝑏! with a
Bitcoin-based commitment

𝑏"

𝑦 = 𝑏!⊕𝑏" 𝑦 = 𝑏!⊕𝑏"
• If Alice does not open the commitment within

one day, Bob can get 1BTC by posting the
"refund" transaction

• Otherwise Alice gets her 1 BTC back

𝑏! 𝑏"

Open 𝑏!

A Commitment Contract in Ethereum

contract Commitment{
bytes32 commitment;
uint timeout;
address owner;
function commit(bytes32 c) payable {

hash = h;
timeout = now + 10 minutes;
owner = msg.sender;

}
function open (uint d) {

if (sha3(d) == commitment)
selfdestruct(msg.sender);

}
function refund (){

if (timeout < now)
self-destruct(owner);

}
}

1. Challenger deposits
coins

2. Solver opens
commitment

3. Refund coins

MPC 39
Data Privacy and Security

Final Result

MPC
Data Privacy and Security

40

• Any two-party stateless functionality can be
simulated in this way

• The simulation enforces financial
consequences

• Generalization to multi-party reactive
functionalities by Kumaresan, Moran, Bentov

• Example: Selling secret information
– Set union plus a money transfer between Alice

and Bob for each new element that they learned

Data Privacy and Security
41MPC

Zero Knowledge

Motivating Example: ID Schemes

MPC
Data Privacy and Security

42

• Protocol is not deniable: Signature is a proof
that someone has talked to the prover

• Can we have a protocol where the verifier
does not learn anything?

𝑝𝑘𝑝𝑘, 𝑠𝑘

Random message 𝑚

Signature on 𝑚

Interactive Proofs

MPC
Data Privacy and Security

43

• Completeness: Honest prover always
convinces the verifier

• Soundness: No malicious prover can convince
the verifier in case 𝑥 ∉ 𝐿

𝑥,𝑤 𝑥

YES/NO

𝑥 ∈ 𝐿 iff
𝑅 𝑥,𝑤 = 1

The Schnorr Protocol

MPC
Data Privacy and Security

44

• Completeness: 𝑔% = 𝑔&'()* = 𝑔* 4 (𝑔()&

• Soundness: Follows from the DL assumption
• Honest-Verifier Zero-Knowledge: Pick random
𝛽, 𝛾 such that 𝛼 = 𝑔% 4 𝑥+&

𝑥,𝑤 𝑥

YES iff 𝑔# =
𝛼 ' 𝑥$

𝐿 = {𝑥 = 𝑔$: 𝑤 ∈ ℤ%}

𝛼 = 𝑔&
𝛽 ←$ ℤ%

𝛾 = 𝛽 M 𝑤 + 𝑎

What Can be Proven in Zero Knowledge?

MPC
Data Privacy and Security

45

• Assuming OWFs exist every language in NP!
– O. Goldreich, S. Micali, A. Widgerson. "Proofs that

yield nothing but their validity." 1986

• The above is achieved by showing a zero-
knowledge proof for an NP-complete
language
– E.g., 3-coloring or graph Hamiltonicity

Zero Knowledge from FHE

MPC
Data Privacy and Security

46

• Let 𝐿 ∈ 𝑁𝑃 with relation 𝑅
– Consider the circuit 𝑓7,8 𝑤 = 𝑅 𝑥,𝑤

• The above protocol is not sound!
– Can you say why?

𝑐′

𝑝𝑘, 𝑐

𝑥, 𝑤 𝑥 ∈ 𝐿𝑑

(𝑝𝑘, 𝑠𝑘) ←$ 𝐊	(1()
𝑐 ←$ 𝐄 𝑝𝑘,𝑤
𝑑 = 𝐃 𝑠𝑘, 𝑐′

𝑐# ←$
𝐂(𝑝𝑘, 𝑓),+, 𝑐)

Adding Soundness (1/2)

MPC
Data Privacy and Security

47

𝑐′

𝑝𝑘, 𝑐

𝑥, 𝑤 𝑥 ∈ 𝐿

𝛽 ←$ 0,1

𝑐# ←$]
𝐂(𝑝𝑘, 𝑓),+, 𝑐)	 if	𝛽 = 1
𝐄 𝑝𝑘, 0 	 if	𝛽 = 0

Check	𝛽 = 𝑑

(𝑝𝑘, 𝑠𝑘) ←$ 𝐊	(1()
𝑐 ←$ 𝐄 𝑝𝑘,𝑤
𝑑 = 𝐃 𝑠𝑘, 𝑐′

𝑑

Adding Soundness (2/2)

MPC
Data Privacy and Security

48

• Soundness follows by the fact that, for 𝑥 ∉ 𝐿,
both ciphertexts will be encryptions of zero
– Thus, Alice can cheat with probability 1/2

• However, we need to ensure that 𝑝𝑘, 𝑐 are
well formed
– Alice generates 𝑝𝑘!, 𝑝𝑘" and Bob asks her to

"open" one at random
– With the other key Alice encrypts 𝑤!, 𝑤" s.t. 𝑤!⊕
𝑤" = 𝑤, and Bob asks her to "open" one of the
encryptions at random

Adding Zero Knowledge

MPC
Data Privacy and Security

49

• The previous protocol is only honest-verifier
zero-knowledge
– In fact, malicious Bob could send to Alice the first

ciphertext in the vector 𝑐, so that 𝑑 reveals the
first bit of 𝑤

• This can be fixed using commitments
– Namely, Alice sends a commitment to 𝑑
– Hence, Bob must reveal his randomness in order

to prove he run the computation as needed
– Finally, Alice opens the commitment revealing 𝑑

The Fiat-Shamir Transformation

MPC
Data Privacy and Security

50

• Non-Interactive zero knowledge
– The proof now consists of a single message

• Security relies on the assumption that hash
function 𝐇 behaves as a random oracle

𝑥, 𝑤

𝛼

𝑥, 𝑤 𝑥 ∈ 𝐿
𝛽 = 𝐇(𝑥, 𝛼)

𝛾

𝛽 Fiat-Shamir
Transform 𝜁 = (𝛼, 𝛾)

Applications

MPC
Data Privacy and Security

51

• Suppose 𝑚 = 𝑚!||𝑚" is signed by Bob with
𝜎 = 𝐒(𝑠𝑘,𝑚) and Alice wants to reveal to
Carol 𝑚" while keeping 𝑚!, 𝜎 secret
– 𝐿 = {𝑚": ∃𝑚!, 𝜎	s. t. 𝐕 𝑝𝑘,𝑚!||𝑚", 𝜎 = 1}

• Alice holds an ID card signed by some
authority and wants to prove she is 18
without revealing her age

• Ubiquitous primitive in advanced
cryptographic constructions

Data Privacy and Security
52MPC

Oblivious
Transfer

Oblivious Transfer

MPC
Data Privacy and Security

53

• Introduced by Rabin in 1981

• Properties
– Sender learns nothing about 𝑏
– Receiver learns nothing about 𝑠!9:

1-out-of-2 OT
𝑠,

𝑠! 𝑠-

𝑏

Why is it Useful?

MPC
Data Privacy and Security

54

• Bob’s output is 1 iff 𝑏 = 𝑏′ = 1 (so it is
equivalent to computing 𝑏 4 𝑏′)

• Impossible to compute AND with information
theoretic security (even for passive security)

1-out-of-2 OT
𝑠,

𝑠! 𝑠-

𝑏

𝑠,, 𝑠! = (0, 𝑏′)

Protocol Transcript

MPC
Data Privacy and Security

55

• Transcript 𝑇 is consistent with 𝑥! if there exist
values 𝑟! and (𝑥", 𝑟") such that 𝑇 is a
transcript of the protocol with inputs
– (𝑥!, 𝑟!) for Alice
– (𝑥", 𝑟") for Bob

𝑥!, 𝑟! 𝑥", 𝑟"

Transcript

Suppose 𝒙𝟏 = 0 and 𝒙𝟐 = 0

MPC
Data Privacy and Security

56

𝑥! = 0, 𝑟! 𝑥" = 0, 𝑟"

Transcript

Has to be consistent with
𝑥! = 1, otherwise malicious

Bob can learn 𝑥!

Suppose 𝒙𝟏 = 0 and 𝒙𝟐 = 𝟏

MPC
Data Privacy and Security

57

𝑥! = 0, 𝑟! 𝑥" = 1, 𝑟"

Transcript

Cannot be consistent with 𝑥! = 1,
because the output of the protocol has

to be different in the following cases
• 𝑥! = 0, 𝑥" = 1
• 𝑥! = 1, 𝑥" = 1

The Attacker

MPC
Data Privacy and Security

58

• Check if 𝑇 is consistent with 𝑥! = 1
– If it is, 𝑥" = 0
– Else, 𝑥" = 1

• Corollary: Any secure protocol for AND must
rely on computational assumptions

𝑥! = 0, 𝑟! 𝑥", 𝑟"

Transcript

OT with Passive Security

MPC
Data Privacy and Security

59

• Recall the Elgamal PKE
– Ciphertext is 𝑐 = (𝑔; , ℎ; 6 𝑚) for ℎ = 𝑔8

– Oblivious key generation: Can generate ℎ without
knowing the secret key 𝑥

𝑠,, 𝑠! ℎ- = 𝑔+, 𝑥 , ℎ!.-

ℎ,, ℎ!

𝑐, = (𝑔/! , ℎ,
/! M 𝑠,)

𝑐! = (𝑔/" , ℎ!
/" M 𝑠!)

𝑐,, 𝑐!

Decrypt 𝑐- using 𝑥

OT with Active Security

MPC
Data Privacy and Security

60

• Let (𝐊, 𝐄, 𝐃) be a PKE and (𝐄′, 𝐃′) be an SKE

(𝑝𝑘,, 𝑠𝑘,) 	←$ 𝐊

𝑝𝑘,, 𝑝𝑘!

𝑘, = 𝐃(𝑠𝑘,, 𝑐)

𝑐 ←$ 𝐄(𝑝𝑘-, 𝑘)

Random 𝑘

𝑘! = 𝐃(𝑠𝑘!, 𝑐)

𝑐,# = 𝐄′(𝑘,, 𝑠,), 𝑐!# = 𝐄′(𝑘!, 𝑠!)

𝑠- = 𝐃′(𝑘, 𝑐-#)

𝐛 = 𝟎 𝐛 = 𝟏
𝑘, 𝑘 $$
𝑘! $$ 𝑘

(𝑝𝑘!, 𝑠𝑘!) ←$ 𝐊

Oblivious Transfer for Strings

MPC
Data Privacy and Security

61

• What if the sender inputs (𝑠,, 𝑠!) consist of a
sequence of strings 𝑠- = 𝑠-!, … , 𝑠-. ?

• Passive case: Just apply basic OT to each
(𝑠,
/ , 𝑠!

/) separately (with the same 𝑏)
• Active case: It’s more complicated
– But a generic construction also exists

Data Privacy and Security
62MPC

Garbled Circuits

Protocols for Arbitrary Functions

MPC
Data Privacy and Security

63

• We now show how Alice and Bob can
compute any function securely
– I.e., a general solution for the problem of secure

two-party computation
– We start with the simpler case of passive security
– Also assume only one party gets the output (we

will see how to generalize it later)

• Main idea: Represent the function as a
Boolean circuit
– Recall: NAND gate is complete

Boolean Circuits

MPC
Data Privacy and Security

64

𝑎! 𝑎" 𝑎% 𝑎& 𝑏! 𝑏" 𝑏% 𝑏&

Bob’s inputsAlice’s inputs

N
AN

D

N
AN

D
N

AN
D

N
AN

D

N
AN

D

0

𝑐! 𝑐" 𝑐% 𝑐& Output

Size = # of gates

High-Level Idea

MPC
Data Privacy and Security

65

• Alice encrypts (garbles) the circuit together
with her input and sends it to Bob

• Bob adds its own input and evaluates the
encrypted circuit gate by gate

• The above must be done in such a way that
the values for the input and internal gates
remain secret
– Except for the output gates

Step 1: Key Generation

MPC
Data Privacy and Security

66

𝑥 𝑦

N
AN

D
𝑧

Could be either input
or internal wires

𝑘'(

𝑘'!
𝑘)(

𝑘)!

𝑘*(

𝑘*!

Random labels (not
sent to Bob directly)

Repeat for each
gate in the circuit

Double Encryption (1/2)

MPC
Data Privacy and Security

67

• How to encrypt a message 𝑚 in such a way
that in order to decrypt it one needs to know
two keys 𝑘,, 𝑘!?
– Encrypt twice, i.e. 𝐄(𝑘$, 𝐄(𝑘!, 𝑚))

• Special properties
– Elusive range: Hard to generate a valid ciphertext

without knowing the key 𝑘
– Verifiable range: Given 𝑘, 𝑐 it is easy to test if 𝑐 is

in the output range of 𝐄(𝑘,6)

Double Encryption (2/2)

MPC
Data Privacy and Security

68

𝐅(𝑘,%)
PRF mapping 𝑛

into 2𝑛 bits

𝑟 ←$ {0,1}= ⊕
𝑥||0=

𝑠

– Elusive range: Hard to find 𝑟 s.t. it is possible to
predict the last 𝑛 bits of 𝐅(𝑘, 𝑟)

– Verifiable range: Given 𝑘 and (𝑟, 𝑠) can compute
𝐅(𝑘, 𝑟) and check that the last 𝑛 bits equal the
last 𝑛 bits of 𝑠

𝑐 = (𝑟, 𝑠)

Step 2: Garbling Gates

MPC
Data Privacy and Security

69

𝑥 𝑦

N
AN

D
z

𝑘'(

𝑘'!
𝑘)(

𝑘)!

𝑘*(

𝑘*!

𝒙 𝒚 𝒙	𝐍𝐀𝐍𝐃	𝒚 Garbled Output
0 0 1 𝐄(𝑘"#, 𝐄(𝑘$#, 𝑘%!))

0 1 1 𝐄(𝑘"#, 𝐄(𝑘$!, 𝑘%!))

1 0 1 𝐄(𝑘"!, 𝐄(𝑘$#, 𝑘%!))

1 1 0 𝐄(𝑘"!, 𝐄(𝑘$!, 𝑘%#))

Given 𝑘'+, 𝑘', it is
possible to decrypt

only 𝑘*- such that 𝑐 =
𝑎	NAND	𝑏 (all other
entries yield invalid

outcome)

Garbling Output Gates

MPC
Data Privacy and Security

70

𝑥 𝑦

N
AN

D
z

𝑘8
$

𝑘8!
𝑘G$

𝑘G!

𝑧 = 0

𝑧 = 1

𝒙 𝒚 𝒙	𝐍𝐀𝐍𝐃	𝒚 Garbled Output
0 0 1 𝐄(𝑘"#, 𝐄(𝑘$#, 1))

0 1 1 𝐄(𝑘"#, 𝐄(𝑘$!, 1))

1 0 1 𝐄(𝑘"!, 𝐄(𝑘$#, 1))

1 1 0 𝐄(𝑘"!, 𝐄(𝑘$!, 0))

Step 3: Sending Garbled Gates

MPC
Data Privacy and Security

71

• For every gate Alice sends the encrypted
labels in randomly permuted order
– So for each gate Bob knows 4 ciphertexts

𝒙 𝒚 𝒙	𝐍𝐀𝐍𝐃	𝒚 Garbled Output
0 0 1 𝐄(𝑘"#, 𝐄(𝑘$#, 1))

0 1 1 𝐄(𝑘"#, 𝐄(𝑘$!, 1))

1 0 1 𝐄(𝑘"!, 𝐄(𝑘$#, 1))

1 1 0 𝐄(𝑘"!, 𝐄(𝑘$!, 0))

To Bob

𝑐&!

𝑐&'

𝑐&(

𝑐&)

Step 4: Garbled Circuit Evaluation (1/3)

MPC
Data Privacy and Security

72

• Bob needs to evaluate the circuit bottom-up
to obtain the keys that reveal the output

• To do so, he needs the labels corresponding
to the inputs
– Recall that part of the input is from Alice and part

is from Bob

𝑎! 𝑎" 𝑎% 𝑎& 𝑏! 𝑏" 𝑏% 𝑏&

Bob’s inputsAlice’s inputs

Step 4: Garbled Circuit Evaluation (2/3)

MPC
Data Privacy and Security

73

• Alice can simply send the labels 𝑘0
*!

corresponding to her inputs
– The labels are clearly independent of the inputs

• Moreover, since the gates are permuted Bob
does not learn whether he received the label
corresponding to 0 or to 1

Step 4: Garbled Circuit Evaluation (3/3)

MPC
Data Privacy and Security

74

• But how can Bob get the labels corresponding
to his inputs?
– He cannot reveal the input to Alice
– Alice cannot send both labels, otherwise Bob

could compute the function on multiple inputs

• Solution: Use 1-out-of-2 OT!

1-out-of-2 OT
𝑘0,

𝑏0
𝑘0!

Yao’s Protocol Overview

MPC
Data Privacy and Security

75

• Garbled circuit
corresponding to 𝑓

• Labels for 𝑎!, … , 𝑎.

𝑚 times OT for each
𝑏!, … , 𝑏/

𝑏!, … , 𝑏1𝑎!, … , 𝑎2

What Can Go Wrong?

MPC
Data Privacy and Security

76

𝑏!, … , 𝑏1𝑎!, … , 𝑎2

OT 2nd Message

OT 1st Message

Garbled Circuit

??
?

N
AN

D

N
AN

D

Bad gate

How to ensure that
the circuit was

garbled correctly?

Cut & Choose

MPC
Data Privacy and Security

77

OT 2nd Message

OT 1st Message

𝑘 Garbled Circuits
N
AN

D

N
AN

D

N
AN

D

N
AN

D

N
AN

D

N
AN

D
Open 𝑡 circuits

…
Challenge set is

chosen randomly

Abort if the test
does not pass

Balls and Bins

MPC
Data Privacy and Security

78

• Say 𝑘 circuits in total, out of which 𝑐 are
corrupted and 𝑡 are tested by the evaluator

#	of	ways	to	pick	only	good =
𝑘 − 𝑐
𝑡

#	of	ways	to	pick	𝑡 =
𝑘
𝑡

• Probability that garbler succeeds
$+#
.
$
.

=
𝑘/2 4 (𝑘/2 − 1) 4 ⋯ 4 (𝑘/2 − 𝑐)

𝑘 4 (𝑘 − 1) 4 ⋯ 4 (𝑘 − 𝑐)
< 2+#

Setting 𝑡 = 𝑘/2

Consequences

MPC
Data Privacy and Security

79

• The above equation implies that the
probability that the test passes in case
– 𝑂(𝑘) circuits are corrupted is negligible
– 𝑂(1) circuits are corrupted is noticeable

1
2
−
𝑐
𝑘

#

≤
$+#
.
$
.

< 2+#

Since 3/".53.5 ≥ ⁄3 ".5
3 = !

"−
5
3

First Idea: Aborting

MPC
Data Privacy and Security

80

• Bob evaluates all unopened garbled circuits
• If some of the outputs differ, abort
• Consider the following attack:

𝑘 Garbled Circuits
??
?

??
?

??
?

N
AN

D

N
AN

D

N
AN

D

…
If 𝑏! = 1 output
𝑓(𝑥!, 𝑥'), else

output 𝑓 𝑥!, 𝑥' + 1

If 𝑏! = 0 Bob will
abort with noticeable

probability (no
simulator can do that)

Second Idea: Take Majority

MPC
Data Privacy and Security

81

• If some of the outputs differ, define the
output to be the majority of the outputs

𝑏!, … , 𝑏1𝑎!, … , 𝑎2

OT 2nd Message + 𝑘
garbled circuits

OT 1st Message

Answer challenge

Challenge set of size 𝑡

Majority output

Another Problem

MPC
Data Privacy and Security

82

OT 2nd Message + 𝑘
garbled circuits

OT 1st Message

Answer challenge

Challenge set of size 𝑡
Can’t send the labels
for Alice’s inputs here

Send them here
instead!

Majority output

Input Consistency

MPC
Data Privacy and Security

83

OT 2nd Message + 𝑘
garbled circuits

OT 1st Message

Answer challenge +
𝑘01! , … , 𝑘01ℓ

Challenge set of size 𝑡
Need to evaluate ℓ =
𝑘 − 𝑡 garbled circuits

What if the keys
do not correspond
to the same input? Majority output

Input Consistency Attack

MPC
Data Privacy and Security

84

𝑓 𝐴, 𝐵

=<𝑎3 ' 𝑏3

𝑓 𝐴, 𝐵

=<𝑎3 ' 𝑏3

𝑓 𝐴, 𝐵

=<𝑎3 ' 𝑏3

𝑓 𝐴, 𝐵

=<𝑎3 ' 𝑏3

𝐵 𝐵 𝐵 𝐵1000010000100001

𝑏! 𝑏" 𝑏7 𝑏8

Protocol output: 𝐌𝐚𝐣(𝑏!, 𝑏", 𝑏7, 𝑏8)

Need to Prove Input Consistency

MPC
Data Privacy and Security

85

OT 2nd Message + 𝑘
garbled circuits + 𝜋!

OT 1st Message

Answer challenge +
𝑘01! , … , 𝑘01ℓ + 𝜋"

Challenge set of size 𝑡
Commit to the input
labels and prove the

input is the same

Prove these labels
are consistent with
the commitment Majority output

Problem: Malicious OT

MPC
Data Privacy and Security

86

OT 2nd Message + 𝑘
garbled circuits + 𝜋!

OT 1st Message

Answer challenge +
𝑘01! , … , 𝑘01ℓ + 𝜋"

Challenge set of size 𝑡OT protocol must
be secure against

malicious
adversaries

Majority output

Selective Failure Attack

MPC
Data Privacy and Security

87

1-out-of-2
string OT 𝑏9

𝑘9,0! 0∈[3]

𝑘9,0, 0∈[3]

1-out-of-2
string OT 𝑏9

0 0∈[3]

𝑘9,0, 0∈[3]

Output is OK if
𝑏* = 0, and else

it fails

Bogus keys

OT on Committed Inputs

MPC
Data Privacy and Security

88

𝑘 garbled circuits + 𝜋! + 𝜋"4

OT + 𝜋!4

Answer challenge +
𝑘01! , … , 𝑘01ℓ + 𝜋"

Challenge set of size 𝑡
OT on committed

inputsProve consistency
between input to the
circuits and in the OT

Majority output

Randomized Functionalities

MPC
Data Privacy and Security

89

• Let 𝑓 𝑥!, 𝑥" be a randomized functionality
– Write 𝑓 𝑥!, 𝑥"; 𝑟 for a run with randomness 𝑟
– Consider 𝑔 𝑥!, 𝑟! , 𝑥", 𝑟" = 𝑓(𝑥!, 𝑥"; 𝑟!⊕ 𝑟")

• Given a secure protocol for 𝑔 we construct
secure protocol for 𝑓:
– Alice picks random 𝑟! and Bob picks random 𝑟"
– Alice and Bob run the protocol for 𝑔
– If one party is honest 𝑟 = 𝑟!⊕ 𝑟" is random

• Works both for passive/active security

2-Output Functionalities (Semi-Honest)

MPC
Data Privacy and Security

90

• Let 𝑓 𝑥!, 𝑥" = (𝑓!(𝑥!, 𝑥"), 𝑓"(𝑥!, 𝑥"))
– I.e., Alice and Bob get different outputs

• Given a secure protocol for 1-output functions
– Alice picks random 𝑟!and Bob picks random𝑥"
– Alice and Bob run the protocol for

𝑓> 𝑥?, 𝑟? , 𝑥@, 𝑟@
= 𝑓?(𝑥?, 𝑥@) ⊕ 𝑟?||𝑓@(𝑥?, 𝑥@) ⊕ 𝑟@

– Bob obtains 𝑢||𝑣, sends 𝑢 to Alice and outputs
𝑣 ⊕ 𝑟"

– Alice outputs 𝑢 ⊕ 𝑟!

2-Output Functionalities (Malicious)

MPC
Data Privacy and Security

91

• Let 𝑓 𝑥!, 𝑥" = (𝑓!(𝑥!, 𝑥"), 𝑓"(𝑥!, 𝑥"))
– Alice picks random 𝑥!, 𝛼, 𝛽
– Alice and Bob run the 1-output protocol for

𝑓# 𝑥!, 𝑟!, 𝛼, 𝛽 , 𝑥" = 𝑐!‖𝑓" 𝑥!, 𝑥" ‖𝛾
𝑐? = 𝑓? 𝑥?, 𝑥@ ⊕ 𝑟?
𝛾 = 𝛼 - 𝑐? + 𝛽

• Bob gets 𝑢||𝑣||𝑤, sends 𝑢||𝑤 to Alice and
outputs 𝑣

• Alice outputs 𝑢 ⊕ 𝑟! iff 𝑤 = 𝛼 4 𝑢 + 𝛽

Performances

MPC
Data Privacy and Security

92

Protocol Security # Gates Gates/Sec
Fairplay (‘04) HBC 4k 600
C&C (‘08) MAL 1k 4
AES Circuit (‘09) MAL 40k 35
C&C + ZK (‘11) MAL 40k 130
C&C + ZK + Parallel (‘11) MAL 6B 130
C&C + Parallel (‘13) MAL 1B 1M

Data Privacy and Security
93MPC

MPC with Honest
Majority

How to Share a Secret?

MPC
Data Privacy and Security

94

• A dealer wants to share a secret 𝑚 between a
set of parties in such a way that
– Any coalition of 𝑡 parties has zero information

about 𝑚
– Any set of at least 𝑡 + 1 parties can reconstruct

the secret 𝑚
– The adversary is passive but all powerful

• The above is called a 𝑡-out-of-𝑛 secret sharing
scheme

Simple Construction for 𝐭 = 𝑛 − 𝟏

MPC
Data Privacy and Security

95

𝑚 ∈ {0,1}3
𝑠", … , 𝑠2 ←$ {0,1}3

𝑠! = 𝑚⊕ 𝑠"⊕… ⊕ 𝑠2

𝑠! 𝑠"

……

𝑠2

𝑚 = 𝑠!⊕ 𝑠"⊕ … ⊕ 𝑠2

Shamir’s Secret Sharing (1/4)

MPC
Data Privacy and Security

96

𝑚 = 𝑝(0)

𝑠! = 𝑝(1)

𝑠' = 𝑝(2)

𝑠+ = 𝑝(𝑛)

1 2 𝑛…

Degree 𝑡 polynomial

over some field

Shamir’s Secret Sharing (2/4)

MPC
Data Privacy and Security

97

• Sharing
– The dealer chooses a random polynomial 𝑝 𝑋 =
𝑚 + ∑%T!U 𝑎% 6 𝑋% over some finite field 𝔽, and
distributes 𝑠% = 𝑝(𝑖) to the 𝑖-th player

Shamir’s Secret Sharing (3/4)

MPC
Data Privacy and Security

98

• Reconstruction
– Given 𝑡 + 1 points 𝑥$, 𝑦$, … , (𝑥U , 𝑦U) one can

interpolate the polynomial and recover the secret
– Lagrange interpolation: Define 𝑝 𝑋 =
∑%T$U 𝑦% 6 𝑝%(𝑋) where we let 𝑝%(𝑋) =
∏%VW ⁄(𝑋 − 𝑥W) (𝑥% − 𝑥W) so that 𝑚 = 𝑝 0 =
∑%T$U 𝑦% 6 𝑝%(0)

Shamir’s Secret Sharing (4/4)

MPC
Data Privacy and Security

99

• Privacy
– For any distribution 𝑀, any non-zero 𝑥!, … , 𝑥U ∈
𝔽, and any 𝑦!, … , 𝑦U ∈ 𝔽 we have that once we fix
𝑝 0 = 𝑎$ = 𝑚

ℙ 𝑝 𝑥! = 𝑦!, … , 𝑝 𝑥U = 𝑦U|𝑀 = 𝑚 = ⁄1 |𝔽|U

Additive Homomorphism

MPC
Data Privacy and Security

100

1 2 𝑛…

Degree 𝑡

Degree 𝑡

Degree 𝑡

𝑚

𝑚′

𝑚 +𝑚′

𝑝(2)

𝑞(2)

𝑝 2 + 𝑞(2)

𝑝 𝑛 + 𝑞(𝑛)

𝑝(𝑛)

𝑞(𝑛)

More on Secret Sharing

MPC
Data Privacy and Security

101

• Computational secret sharing
– Computational vs. unconditional security

• General access structures
– Richer sets of authorized players

• Verifiable secret sharing
– Allows to deal with malicious dealers handing

wrong shares

• Robust and non-malleable secret sharing
– Malicious players handing wrong shares

Threshold Cryptography

MPC
Data Privacy and Security

102

• Suppose we have a secret key 𝑠𝑘 for a
signature scheme, but we don’t want to store
it on a machine

• Solution:
– Share 𝑠𝑘 within 𝑛 machines
– Sign in a distributed manner (without ever

reconstructing 𝑠𝑘)

• Useful in cryptocurrencies to protect users'
wallets from thefts

From Secret Sharing to MPC

MPC
Data Privacy and Security

103

• We now describe a protocol for computing
any 𝑛-party functionality

• High-level idea
– We represent the function as an arithmetic circuit
– Each party shares its input with the other parties
– Evaluate the circuit gate by gate (invariant: the

values of the intermediary gates are shared
between the parties)

– Reconstruct the output

Arithmetic Circuits

MPC
Data Privacy and Security

104

𝑥! 𝑥" 𝑥% 𝑥& 𝑥5 𝑥6 𝑥7 𝑥8

Inputs from the 𝑛 players

×

×
+

+ +

𝑐

𝑦! 𝑦" 𝑦% 𝑦& Output

Size = # of gates

Multiplication
gates Addition

gates

Step 1: Share Inputs

MPC
Data Privacy and Security

105

• Each player secret shares its own input 𝑢 by
picking a random polynomial 𝑝(𝑋) of degree
≤ 𝑡 such that 𝑝 0 = 𝑢

• At the end of this phase, each party thus holds
one share for each of the inputs

𝑢! = 𝑝(1)

𝑢Z = 𝑝(4) 𝑢[= 𝑝(3)

𝑢" = 𝑝(2)

𝑢, 𝑝(𝑋)

Step 2: Addition Gates (1/2)

MPC
Data Privacy and Security

106

• Given secret sharing 𝑢 = (𝑢!, … , 𝑢1) and
𝑣 = (𝑣!, … , 𝑣1) we want to compute a

secret sharing 𝑤 of the output 𝑤 = 𝑢 + 𝑣
• By additive homomorphism each player can

locally compute 𝑤0 = 𝑢0 + 𝑣0

Step 2: Addition Gates (2/2)

MPC
Data Privacy and Security

107

• Since 𝑢 = (𝑝(1), … , 𝑝(𝑛)) and 𝑣 =
(𝑞(1), … , 𝑞(𝑛)) for random polynomials 𝑝, 𝑞
s.t. 𝑢 = 𝑝 0 and 𝑣 = 𝑞(0), it also holds that
𝑤 = ((𝑝 + 𝑞)(1), … , (𝑝 + 𝑞)(𝑛)) satisfies
𝑤 = (𝑝 + 𝑞)(0)

𝑤% = 𝑢% + 𝑣%

+

[𝑢] [𝑣]

[𝑤]

Step 2: Multiplication by a Constant (1/2)

MPC
Data Privacy and Security

108

• Given secret sharing 𝑢 = (𝑢!, … , 𝑢1) we
want to compute a secret sharing 𝑤 of the
output 𝑤 = 𝑐 4 𝑢

• By additive homomorphism each player can
locally compute 𝑤0 = 𝑐 4 𝑢0

Step 2: Multiplication By a Constant (2/2)

MPC
Data Privacy and Security

109

• Since 𝑢 = (𝑝(1), … , 𝑝(𝑛)) for random
polynomial 𝑝 s.t. 𝑢 = 𝑝 0 , it holds that
𝑤 = (𝑐 4 𝑝(1), … , 𝑐 4 𝑝(𝑛)) satisfies 𝑤 = 𝑐 4
𝑝(0)

𝑤% = 𝑐 6 𝑢%

×

𝑐 [𝑢]

[𝑤]

Step 2: Multiplication Gates (1/6)

MPC
Data Privacy and Security

110

• Given secret sharing 𝑢 = (𝑢!, … , 𝑢1) and
𝑣 = (𝑣!, … , 𝑣1) we want to compute a

secret sharing 𝑤 of the output 𝑤 = 𝑢×𝑣
• Each player can locally compute 𝑤0 = 𝑢0×𝑣0

Step 2: Multiplication Gates (2/6)

MPC
Data Privacy and Security

111

• Since 𝑢 = (𝑝(1), … , 𝑝(𝑛)) and 𝑣 =
(𝑞(1), … , 𝑞(𝑛)) for random polynomials 𝑝, 𝑞
s.t. 𝑢 = 𝑝 0 and 𝑣 = 𝑞(0), it also holds that
𝑤 = ((𝑝×𝑞)(1), … , (𝑝×𝑞)(𝑛)) satisfies 𝑤 =
(𝑝×𝑞)(0)
– Note that the degree of (𝑝×𝑞)(𝑋) is now 2𝑡, but

as long as 𝑛 > 2𝑡 we can still uniquely reconstruct
the secret

Step 2: Multiplication Gates (3/6)

MPC
Data Privacy and Security

112

• Unfortunately, after another multiplication the
degree would become 4𝑡, which is too large if
we just want to assume honest majority
– To handle this problem, we use a trick to reduce

the degree

Step 2: Multiplication Gates (4/6)

MPC
Data Privacy and Security

113

• Each party first lets 𝑧 = 𝑢 × 𝑣 =
(𝑧!, … , 𝑧1), and then creates a fresh secret
sharing of each 𝑧0 = (𝑧0,!, … , 𝑧0,1)
– That is, it picks random 𝑝%(𝑋) of degree ≤ 𝑡 s.t.
𝑝% 0 = 𝑧% and 𝑧%,W = 𝑝%(𝑗), and sends 𝑧%,W to the
𝑗-th player

Step 2: Multiplication Gates (5/6)

MPC
Data Privacy and Security

114

• Now, let

• Here 𝛼0 are the lagrange coefficients for the
reconstruction of 𝑧 = ∑𝛼0 4 𝑧0
– Hence, 𝑤 = (𝑝∗ 1 ,… , 𝑝∗ 𝑛) where 𝑝∗(𝑋) =
∑% 𝛼% 6 𝑝% (𝑋) is a degree ≤ 𝑡 polynomial s.t.
𝑝∗ 0 = ∑% 𝛼% 6 𝑝% 0 = 𝑤

𝑤 =~
%T!

=
𝛼% 6 𝑧%

= ~
%T!

=
𝛼% 6 𝑧%,!, … ,~

%T!

=
𝛼% 6 𝑧%,=

Step 2: Multiplication Gates (6/6)

MPC
Data Privacy and Security

115

𝑤W = 𝑝∗ 𝑗 =~
%
𝛼% 6 𝑝% (𝑗)

×

[𝑢] [𝑣]

[𝑤]

Step 3: Output Reconstruction

MPC
Data Privacy and Security

116

• At the end of the protocol, each player owns a
share of the output wire [𝑦] which it sends to
each other player

• Thus, each player can obtain the output

Feasibility of Maliciously Secure MPC

MPC
Data Privacy and Security

117

• Given an MPC protocol secure against passive
adversaries, can we compile it into an MPC
protocol secure against active adversaries?

• Main idea:
– Each player behaves as in the semi-honest

protocol, but also
– Each player proves in zero-knowledge that the

messages it sends are computed correctly
– O. Goldreich, S. Micali, A. Wigderson. "How to

play any mental game." 1987

Efficient MPC with Malicious Security

MPC
Data Privacy and Security

118

• I. Damgård, V. Pastro, N. P. Smart, S. Zakarias.
"Multiparty computation from somewhat
homomorphic encryption." 2012

• N. Chandran, J. A. Garay, P. Mohassel, S.
Vusirikala. "Efficient, constant-round and
actively secure MPC: Beyond the three-party
case." 2017

• X. Wang, S. Ranellucci, J. Katz: "Global-scale
secure multiparty computation." 2017

Data Privacy and Security
119MPC

Redactable
Blockchain

Blockchain Technology

MPC
Data Privacy and Security

120

• Many applications beyond cryptocurrencies
– Healthcare
– Identity and Reputation Management
– IoT Devices
– Smart Grid
– Supply Chain Management
– Post-trade Services (US cash equities)

• HYPE?

Necessity of Hard Forks

MPC
Data Privacy and Security

121

• Resolve human errors
– Accommodate legal and regulatory requirements,

and address bugs, and mischief

• General Data Protection Regulation (GDPR)
– Privacy violations lead to hefty fines: 4 percent of a

company’s annual revenue or EUR 20 million

• Smart contracts require flexibility
– The DAO had $60 million worth of cryptocurrency

stolen

Recent Developments (1/3)

MPC
Data Privacy and Security

122

• The "right to be forgotten"
– A real case has stalled after the European Court of

Justice found a Dutch man's identity information
was uploaded on the Bitcoin blockchain

• The Open Data Institute (ODI) Report:
– "Immutable data storage in blockchains may be

incompatible with legislation which requires
changes to the official truth"

– "Even if personal data is not stored on a blockchain,
metadata can be sufficient to reveal information"

Recent Developments (2/3)

MPC
Data Privacy and Security

123

• The European Union Agency for Network and
Information Security (ENISA) Report:
– "Define what to be kept confidential in order to

remain compliant with regulatory requirements"
– "Identify or develop standard methods for

removing data from a ledger"

Recent Developments (3/3)

MPC
Data Privacy and Security

124

• The European Securities and Markets Authority
(ESMA) Report:
– "The DLT that was originally designed for Bitcoin

created immutable records, meaning that
transactions once validated cannot be modified,
cancelled or revoked"

– "While this immutability had clear benefits in a
permissionless DLT framework, it appears ill-suited
to securities markets, e.g., operational errors may
necessitate the cancellation of some transactions"

An Emergency Lockbox

MPC
Data Privacy and Security

125

𝐵, 𝐵! 𝐵" 𝐵7 …

𝐵, 𝐵! 𝐵" 𝐵7 …

A standard
blockchain

A redactable
blockchain

Emergency lockbox

Edit a Block

MPC
Data Privacy and Security

126

𝐵, 𝐵! 𝐵" 𝐵7 …

𝐵!#

𝐵, 𝐵!# 𝐵" 𝐵7 …

Hash collision!

Remove a Block

MPC
Data Privacy and Security

127

𝐵, 𝐵" 𝐵7 …

𝐵!

𝐵, 𝐵" 𝐵7 …

Hash collision!

Chameleon Hashing

MPC
Data Privacy and Security

128

𝑥

𝑥′
𝐇 ℎ

𝑥

𝑥′
𝐇 ℎ

Standard
hashing

Chameleon
hashing

Simple Construction (Inadequate)

MPC
Data Privacy and Security

129

• Let 𝔾 be a cyclic group of order 𝑞 with
generator 𝑔
– E.g., 𝔾 is the subgroup of quadratic residues of ℤ]∗

• Hash key and trapdoor: ℎ𝑘 = 𝑔* and 𝑡𝑘 = 𝑎
• Hash computation: ℎ = 𝑔3 4 ℎ𝑘4 for random
𝑟 ∈ ℤ5

• Hash collision: Given 𝑚, 𝑟,𝑚′, solve for 𝑎𝑟 +
𝑚 = 𝑎𝑟6 +𝑚6mod	𝑞
– After few collisions the trapdoor is exposed!

Enhanced Collision Resistance

• Hard finding collisions even with access to
collision oracle
– Collision should be fresh

• Randomness plays the role of "check value"

MPC
Data Privacy and Security

130

𝐇 𝑚$; 𝑟$ = 𝐇 𝑚!; 𝑟!

(ℎ𝑘, 𝑡𝑘)ℎ𝑘

(ℎ, 𝑚, 𝑟 , 𝑚′)

𝑟′𝑡𝑘 𝑚,, 𝑟, , (𝑚!, 𝑟!)

win/lose

Leaving an Immutable Scar

MPC
Data Privacy and Security

131

𝐵, 𝐵! 𝐵" 𝐵7 …

𝐵, 𝐵!# 𝐵" 𝐵7 …

Missing link!

Concluding Remarks (1/2)

MPC
Data Privacy and Security

132

• Geared for "permissioned" systems, not for
open, decentralized cryptocurrency systems

• Database or spreadsheet?
– A redactable blockchain is decentralized and

immutable as all other blockchains
– There is no centralized server and bad actors won't

be able to make changes

• Only trusted administrators acting on agreed
rules of governance can edit, rewrite or remove
blocks without breaking the chain

Concluding Remarks (2/2)
• The key can be divided in shares
– Must be protected as the keys of CAs
– None of the authorities knows the trapdoor
– When needed collisions can be computed via a

secure distributed protocol (MPC)

• Amending by appending is often pointless
• Storing just the hash does not help since the

hash provides a "proof of existence"

MPC
Data Privacy and Security

133

Summary

MPC
Data Privacy and Security

134

• Technology developed and patented with
Accenture

• The blockchain remains decentralized and
immutable
– But a "plan b" is supported if things go wrong

• The invention preserves blockchain's benefits,
while making it viable for enterprise use

• Disruptive, breaking a taboo
– NYT, FT, Forbes, Reuters, Fortune, MIT Tech Review

Redaction in the Permissionless Setting

MPC
Data Privacy and Security

135

• The previous solution is clearly impractical in
the permissionless setting

• We now give a more practical solution
– No additional trust assumption
– Consensus on what needs to be redacted
– Publicly verifiable and accountable

• D. Deuber et al. Redactable Blockchain in the
Permissionless Setting. IEEE S&P 2019

Redaction Request

MPC
Data Privacy and Security

136

• Modify the block structure
– Two links instead of one (old link, new link)

• The new block is also sent to a candidate pool

𝐵, 𝐵! 𝐵" 𝐵7 …

Block 𝐵! contains harmful
data and should be redacted

𝐵!#

ha
sh

 ℎ

Voting

MPC
Data Privacy and Security

137

• Miners retrieve proposed blocks
• As they know the hash ℎ, each miner can vote

by including ℎ in newly minted blocks
• Voting phase spans an epoch
– 1024 blocks in Bitcoin (2 weeks)

• Policy: Say if 50% of the blocks voted, the
redaction is approved

𝐵, 𝐵! 𝐵" …
ℎ ℎ

Validating Blocks

MPC
Data Privacy and Security

138

• Standard blocks
– Check PoW, PoS, etc.
– Check validity of data and links (old/new)

• Redacted blocks
– Check PoW, PoS, etc. (w.r.t. old link)
– Check new link broken, old link good
– Check the redaction was approved

𝐵, 𝐵!# 𝐵" 𝐵7

Integration in Bitcoin

MPC
Data Privacy and Security

139

𝐇

𝐇 𝐇

𝐇 𝐇 𝐇 𝐇
𝑇𝑋! 𝑇𝑋" 𝑇𝑋7 𝑇𝑋8 𝑇𝑋A 𝑇𝑋B 𝑇𝑋C 𝑇𝑋D

ℎ,, ℎ,! ℎ!, ℎ!!

ℎ!ℎ,

Prev
hash SaltTXBlock

Header

𝐇

Block

TX’

𝑇𝑋"#

Integration in Bitcoin

MPC
Data Privacy and Security

140

Prev
hash SaltTX’TX

𝑇𝑋! 𝑇𝑋" 𝑇𝑋7 𝑇𝑋8

Prev
hash SaltTX’TX

𝑇𝑋!
𝐻(𝑇𝑋")

𝑇𝑋7 𝑇𝑋8𝑇𝑋"#

• Old link is 𝐻(𝑝𝑟𝑒𝑣_ℎ𝑎𝑠ℎ, 𝑇𝑋, 𝑇𝑌, 𝑠𝑎𝑙𝑡)
– 𝑇𝑌 is from the previous block header

• New link is 𝐻(𝑝𝑟𝑒𝑣_ℎ𝑎𝑠ℎ, 𝑇𝑋′, 𝑇𝑌, 𝑠𝑎𝑙𝑡)

