
Lattice-based Cryptography
Cryptography Course

Academic Year 2024/2025

Prof. Daniele Venturi
Dipartimento di Informatica

The Quantum Threat

• An algorithm by Shor [Sho94] solves the factoring and discrete
logarithm problems in polynomial-time on a quantum machine
• The algorithm requires an ideal quantum Turing machine

• Factoring a 1024-bit integer requires 2050 logical qubits and a
quantum circuit with billions of quantum gates

• Despite recent progress on quantum computation, current
implementations can only factor tiny numbers (e.g., 15 and 21)

• Nevertheless, the NIST started in 2017 a process to solicit,
evaluate, and standardize quantum-resistant cryptography
• The selected algorithms were announced in 2022

• Most of these algorithms are based on lattices

2 Lattice-based Cryptography – Daniele Venturi

What’s the Rush?

• Big quantum computers won’t be available for many years
• If ever…

• Can’t we just wait?

• Better safe than sorry
• Harvesting attacks: Store today’s keys/ciphertexts to break later

• Rewrite history: Forge signatures for old keys

• Deploying new cryptography at scale requires 10+ years

3 Lattice-based Cryptography – Daniele Venturi

4 Lattice-based Cryptography – Daniele Venturi

Lattices

What is a Lattice?

• Simply, a set of points in a high-dimensional space
• Arranged periodically

• Formally, take 𝑛 linearly independent vectors (𝒃1, … , 𝒃𝑛) in ℝ𝑛

and consider all integer combinations

ℒ = {𝑎1𝒃1 + ⋯ + 𝑎𝑛𝒃𝒏: 𝑎1, … , 𝑎𝑛 ∈ ℤ}

5 Lattice-based Cryptography – Daniele Venturi

• We call (𝒃1, … , 𝒃𝑛) a basis
• The same lattice may have

different equivalent basis
• Even if base vectors are long, there

are short vectors in the lattice

𝒃1

𝒃2

History
• Geometric objects with rich mathematical structure

• Considerable mathematical interest starting from Gauss (1801),
Hermite (1850), and Minkowski (1896)

• Recently, many interesting applications (cryptanalysis, factoring
rational polynomials, finding integer relations, …)

6 Lattice-based Cryptography – Daniele Venturi

Equivalent Bases

• Sometimes, we write ℒ(𝑩) where 𝑩 is the matrix whose
columns are (𝒃1, … , 𝒃𝑛)
• One can also define a lattice as a discrete additive subgroup of ℝ𝑛

• Theorem: Two bases 𝑩1, 𝑩2 are equivalent iff 𝑩1 = 𝑩2 ∙ 𝑼
• 𝑼 unimodular (i.e., integer matrix with det 𝑼 = ±1)

7 Lattice-based Cryptography – Daniele Venturi

(0,0)

(0,1)(1,1) (2,1)

(0,1)

(1,1)

(2,0)

• Equivalent bases:
• Permute vectors (i.e., 𝒃𝑖 𝒃𝑗)

• Negate vectors (i.e., 𝒃𝑖 ← (−𝒃𝑖))
• Add integer multiple of another

vector (i.e., 𝒃𝑖 ← 𝒃𝑖 + 𝑘 ∙ 𝒃𝑗 , 𝑘 ∈ ℤ)

(0,0)

Equivalent Bases

• Let 𝑩1 = 𝑩2 ∙ 𝑼
• If 𝑼 is unimodular, so is 𝑼−1 and 𝑩2 = 𝑩1 ∙ 𝑼−1

• Hence, ℒ(𝑩1) ⊆ ℒ(𝑩2) and ℒ(𝑩2) ⊆ ℒ(𝑩1) or ℒ 𝑩1 = ℒ(𝑩2)

• Let 𝑩1 = 𝑩2 ∙ 𝑾 and 𝑩2 = 𝑩1 ∙ 𝑽 for integer matrices 𝑽, 𝑾
• Hence, 𝑩1 = 𝑩1 ∙ 𝑽 ∙ 𝑾 or 𝑩1 ∙ (𝑰 − 𝑽 ∙ 𝑾) = 𝟎

• Since the vectors in 𝑩1 are linearly independent, 𝑰 − 𝑽 ∙ 𝑾 = 𝟎

• Thus, 𝑽 ∙ 𝑾 = 𝑰 and det 𝑽 ∙ det 𝑾 = det 𝑽 ∙ 𝑾 = 1

• Since 𝑽, 𝑾 are integer matrices det 𝑽 , det 𝑾 ∈ ℤ and det 𝑽 =
det 𝑾 = ±1

8 Lattice-based Cryptography – Daniele Venturi

The Fundamental Region

• The fundamental region of a lattice corresponds to a periodic
tiling of ℝ𝑛 by copies of some body
• For instance, [0,1) is a fundamental region of the integer lattice ℤ, as

every 𝑥 ∈ ℝ is in the unique translate 𝑥 + [0,1)

• Useful for measuring arbitrary points relative to a lattice
• 𝒫 𝑩 is half-open and 𝒗 + 𝒫 𝑩 for 𝒗 ∈ ℒ(𝑩) forms a tiling of ℝ𝑛

• For every 𝒙 ∈ ℝ𝑛, there is a unique 𝒗 ∈ ℒ(𝑩) s.t. 𝒙 ∈ (𝒗 + 𝒫 𝑩)

9 Lattice-based Cryptography – Daniele Venturi

• A lattice base yields a fundamental region
called the fundamental parallelepiped

𝒫 𝑩 = 𝑩 ∙ 0,1 𝑛 =
𝑖=1

𝑛

𝑐𝑖 ∙ 𝒃𝑖: 𝑐𝑖 ∈ [0,1)

Determinant

• The determinant of a lattice ℒ(𝑩) is det ℒ = |det(𝑩)|

• Note that this is well defined, as for every unilateral 𝑼

|det(𝑩 ∙ 𝑼)| = | det 𝑩 ∙ det(𝑼)| = |det(𝑩)|

• The determinant corresponds to the volume of the
fundamental parallelepiped
• The determinant is the reciprocal of the density (i.e., big determinant

means sparse lattice)

• Moreover, the volume is the same for every fundamental region

10 Lattice-based Cryptography – Daniele Venturi

Successive Minima

• Let 𝜆1(ℒ) be the length of the shortest non-zero vector in a
lattice ℒ
• Usually, in terms of the Euclidean norm

• The shortest vector is never unique, as for every 𝒗 ∈ ℒ also −𝒗 ∈ ℒ

• More generally, 𝜆𝑘(ℒ) denotes the radius of the ball containing
𝑘 linearly independent vectors
• For 𝑘 = 𝑛 the ball contains a basis of the entire space

11 Lattice-based Cryptography – Daniele Venturi

Minkowski’s Theorem

• Lemma (Blichfeld): For any lattice ℒ and set 𝒮 with vol 𝒮 >
det(ℒ), ∃ distinct 𝒛1, 𝒛2 ∈ 𝒮 s.t. 𝒛1 − 𝒛2 ∈ ℒ

• Consider 𝒮𝒙 = 𝒮 ∩ (𝒙 + 𝒫 𝑩) with 𝒙 ∈ ℒ(𝑩)
• So, 𝒮 = 𝒙∈ℒ(𝑩)ڂ 𝒮𝒙 and vol 𝒮 = σ𝒙∈ℒ(𝑩) vol 𝒮𝒙

• For each 𝒙 ∈ ℒ 𝐵 , 𝒮𝒙 − 𝒙 = (𝒮 − 𝒙) ∩ 𝒫 𝑩 ⊆ 𝒫 𝑩

• Then, vol 𝒫 𝑩 < vol 𝒮 = σ𝒙∈ℒ(𝑩) vol 𝒮𝒙 = σ𝒙∈ℒ(𝑩) vol 𝒮𝒙 − 𝒙

• There are distinct 𝒙, 𝒚 ∈ ℒ(𝑩) s.t. (𝒮𝒙 − 𝒙) ∩ (𝒮𝒚 − 𝒚) ≠ ∅
• Take 𝒛 ∈ (𝒮𝒙 − 𝒙) ∩ (𝒮𝒚 − 𝒚), so that 𝒛1 = 𝒛 + 𝒙 ∈ 𝒮𝒙 ⊆ 𝒮 and 𝒛2 =

𝒛 + 𝒚 ∈ 𝒮𝒚 ⊆ 𝒮

• Hence, 𝒛1 − 𝒛2 = 𝒙 − 𝒚 ∈ ℒ(𝑩)

12 Lattice-based Cryptography – Daniele Venturi

Minkowski’s Theorem
• Theorem (Minkowski): For any lattice ℒ and convex, zero-

symmetric, set 𝒮 with vol 𝒮 > 2𝑛det(ℒ), there exists a non-
zero lattice point in 𝒮

• Corollary: For every ℒ, we have that 𝜆1(ℒ) ≤ 𝑛 ∙ det(ℒ)1/𝑛

• Let ℓ = min
𝒙∈ℒ∖𝟎

𝒙 ∞ and assume ℓ > det(ℒ)1/𝑛

• The hypercube 𝒞 = {𝒙: 𝒙 ∞ < ℓ} is convex, symmetric and has
volume vol 𝒞 = (2ℓ)𝑛> 2𝑛det(ℒ)

13 Lattice-based Cryptography – Daniele Venturi

𝒛2
𝒛2

2𝒛1

−2𝒛2 • Let 𝒮/2 = {𝒙: 2𝒙 ∈ 𝒮} with vol 𝒮/2 = 2−𝑛 ∙
vol 𝒮 > det(ℒ)

• Take 𝒛1, 𝒛2 ∈ 𝒮/2; by Blichfeld 𝒛1 − 𝒛2 ∈ ℒ

• Now, 2𝒛1, −2𝒛2∈ 𝒮 and 𝒛1−𝒛2=
2𝒛1−2𝒛2

2
∈ 𝒮

Hard Problems

• 𝐒𝐕𝐏𝛾: Given 𝑩, find vector in ℒ(𝑩) with length ≤ 𝛾 ∙ 𝜆1(ℒ(𝑩))

• 𝐆𝐚𝐩𝐒𝐕𝐏𝛾: Given 𝑩, decide if 𝜆1(ℒ(𝑩)) is ≤ 1 or ≥ 𝛾

• 𝐒𝐈𝐕𝐏𝛾: Given 𝑩, find 𝑛 linearly independent vectors in ℒ(𝑩)
with length ≤ 𝛾 ∙ 𝜆𝑛(ℒ(𝑩))

• 𝐂𝐕𝐏𝛾: Given 𝑩 and 𝒗, find a lattice point that is at most 𝛾 times
farther than the closest lattice point
• It is known that 𝐒𝐕𝐏𝛾 ≤ 𝐂𝐕𝐏𝛾

• 𝐁𝐃𝐃: Find closest lattice point, given that 𝒗 is already close

14 Lattice-based Cryptography – Daniele Venturi

General Hardness Results

• Exact algorithms take time 2𝑛

• Polynomial-time algorithm for gap 𝛾 = 2𝑛 log log 𝑛/ log 𝑛

• No better quantum algorithm known

• 𝑁𝑃 hardness for gap 𝛾 = 𝑛𝑐/ log log 𝑛

• For cryptographic applications, we need 𝛾 = Ω(𝑛)

• Not believed to be 𝑁𝑃-hard for 𝛾 = 𝑛

15 Lattice-based Cryptography – Daniele Venturi

1 𝑛𝑐/ log log 𝑛 𝑛 𝑛 2𝑛 log log 𝑛/ log 𝑛

𝑁𝑃−hard 𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃 cryptography 𝑃

Small Integer Solution Problem
• Fix dimension 𝑛, and modulus 𝑞 (e.g., 𝑞 ≈ 𝑛2)

• Given random vectors 𝒂1, … , 𝒂𝑚 ∈ ℤ𝑞
𝑛, find non-zero small

𝑧1, … , 𝑧𝑚 ∈ ℤ such that

• Observations:
• Trivial if the size of the 𝑧𝑖’s is not restricted (Gaussian elimination)
• Equivalently, find non-zero short 𝒛 ∈ ℤ𝑚 s.t. 𝑨 ∙ 𝒛 = 𝟎 ∈ ℤ𝑞

𝑛

16 Lattice-based Cryptography – Daniele Venturi

𝒂1𝑧1 ∙ 𝒂2+𝑧2 ∙ 𝒂𝑚+ ⋯ + 𝑧𝑚 ∙ 𝟎= in ℤ𝑞
𝑛

SIS as a Lattice Problem

17 Lattice-based Cryptography – Daniele Venturi

• Matrix 𝑨 = (𝒂1, … , 𝒂𝑚) ∈ ℤ𝑞
𝑛×𝑚

ℒ⊥ 𝑨 = 𝒛 ∈ ℤ𝑚: 𝑨 ∙ 𝒛 = 𝟎

• Theorem (Ajt96). For any 𝑛-dimensional
lattice, it holds that:

𝐆𝐚𝐩𝐒𝐕𝐏𝛽 𝑛, 𝐒𝐈𝐕𝐏𝛽 𝑛 ≤ 𝐒𝐈𝐒𝛽

(0, 𝑞)

(𝑞, 0)
(0,0)

Find short (𝒛 ≤ 𝛽 ≪ 𝑞)
solutions for random 𝑨

• Also true for any lattice coset ℒ𝒖
⊥ 𝑨 = 𝒛 ∈ ℤ𝑚: 𝑨 ∙ 𝒛 = 𝒖 = 𝒖 +

ℒ⊥ 𝑨 (i.e., inhomogenuous SIS)

Learning with Errors [Reg05]

• Dimension 𝑛, modulus 𝑞 > 2, noise distribution 𝜒

• Find 𝒔 ∈ ℤ𝑞
𝑛 given 𝑚 noisy random inner product equations

18 Lattice-based Cryptography – Daniele Venturi

+

=

𝒔t

𝑨

𝒆t

𝒃t

∈ ℤ𝑞
𝑛

∈ ℤ𝑞
𝑚

Small noise ∈ ℤ𝑞
𝑚

𝑒𝑖 ≤ 𝛼𝑞; 𝛼 ≪ 1

• Trivial without noise
• Gaussian distribution over ℤ,

with std deviation ≥ 𝑛 and ≪ 𝑞
• Rate parameter 𝛼 ≪ 1

• Need 𝛼𝑞 > 𝑛 for worst-case
hardness and because there is an
exp((𝛼𝑞)2)-time attack

Decisional LWE

• Distinguish the matrix 𝑨 and the vector 𝒃 from random (𝑨, 𝒃)
• Decisional LWE is equivalent to Search LWE

19 Lattice-based Cryptography – Daniele Venturi

𝒆t+

=

≡ 𝐔𝑞
(𝑛+1)×𝑚

𝒔t

𝑨

𝒃t

𝑨

𝒃t

∈ ℤ𝑞
𝑛

∈ ℤ𝑞
𝑚

Small noise ∈ ℤ𝑞
𝑚

𝑒𝑖 ≤ 𝛼𝑞; 𝛼 ≪ 1

Uniform distribution over ℤ𝑞
(𝑛+1)×𝑚

≈

LWE as a Lattice Problem

20 Lattice-based Cryptography – Daniele Venturi

• Matrix 𝑨 = (𝒂1, … , 𝒂𝑚) ∈ ℤ𝑞
𝑛×𝑚

ℒ 𝑨 = 𝒛 ∈ ℤ𝑚: 𝒛t = 𝒔t ∙ 𝑨

• Theorem (Reg05,Pei10). For any 𝑛-
dimensional lattice, it holds that:

𝐆𝐚𝐩𝐒𝐕𝐏𝛼𝑛 , 𝐒𝐈𝐕𝐏𝛼𝑛 ≤ 𝐋𝐖𝐄

(0, 𝑞)

(𝑞, 0)
(0,0)

LWE is BDD on ℒ 𝑨 : Given
𝒃t ≈ 𝒛t = 𝒔t ∙ 𝑨 find 𝒛

• Quantum reduction for broad parameters [Reg05]

• Classical reduction for restricted parameters (e.g., 𝑞 ≈ 2𝑛) [Pei10]

Hardness of LWE

• More formally define the LWE distribution as

• Parameters:
• 𝛼 = 1/poly(𝑛) or 𝛼 = 2−𝑛𝜖

(stronger assumption as 𝛼 decreases)

• 𝑚 = Θ(𝑛 log 𝑞) or 𝑚 = poly(𝑛) (stronger assumption as 𝑚
increases)

• 𝑞 = 2𝑛𝜖
or 𝑞 = poly(𝑛) (stronger assumption as 𝑞 increases)

• Noise distribution χ such that ℙ 𝑒 > 𝛼𝑞: 𝑒 ← χ ≤ negl(𝑛)

21 Lattice-based Cryptography – Daniele Venturi

𝐋𝐖𝐄 𝑛, 𝑚, 𝑞, χ = (𝑨, 𝒃):
𝑨 ← ℤ𝑞

𝑛×𝑚; 𝒔 ← ℤ𝑞
𝑛;

𝒆 ← χ𝑚; 𝒃t = 𝒔t ∙ 𝑨 + 𝒆t
𝑞

Simple Properties
• Check a candidate solution 𝒕 ∈ ℤ𝑞

𝑛

• Test if all the elements in 𝒃 − 𝒕, 𝒂 are small
• If 𝒕 ≠ 𝒔, then 𝒃 − 𝒕, 𝒂 = 𝒔 − 𝒕, 𝒂 + 𝑒 is well-spread in ℤ𝑞

• Shift the secret by any 𝒓 ∈ ℤ𝑞
𝑛

• Given (𝒂, 𝑏 = 𝒔, 𝒂 + 𝑒), output (𝒂, 𝑏′ = 𝑏 + 𝒓, 𝒂 = 𝒔 + 𝒓, 𝒂 + 𝑒)
• Using random 𝒓 yields a random self-reduction
• Amplification of success probabilities (i.e., non-negligible success

probability for random 𝒔 ∈ ℤ𝑞
𝑛 implies overwhelming success

probability for every 𝒔 ∈ ℤ𝑞
𝑛)

• Multiple secrets: (𝒂, 𝑏1 = 𝒔1, 𝒂 + 𝑒1, … , 𝒔𝑡, 𝒂 + 𝑒𝑡)
indistinguishable from random (𝒂, 𝑏1, … , 𝑏𝑡)

22 Lattice-based Cryptography – Daniele Venturi

Search/Decision Equivalence

• Suppose we are given an oracle that perfectly distinguishes
pairs 𝒂, 𝑏 = 𝒔, 𝒂 + 𝑒 from random 𝒂, 𝑏

• To find 𝑠1, it suffices to test if 𝑠1 = 0
• Because we can shift 𝑠1 by 0,1, … , 𝑞 − 1 (assuming 𝑞 = poly(𝑛))

• Then we can do the same for 𝑠2, … , 𝑠𝑛

• The test: For each 𝒂, 𝑏 , choose random 𝑟 ∈ ℤ𝑞 and invoke the
oracle on pairs 𝒂′ = 𝒂 − (𝑟, 0, … , 0), 𝑏

• Note that 𝑏 = 𝒔, 𝒂′ + 𝑠1 ∙ 𝑟 + 𝑒
• If 𝑠1 = 0, then 𝑏 = 𝒔, 𝒂′ + 𝑒 and the oracle accepts

• If 𝑠1 ≠ 0, then 𝑏 is uniform (assuming 𝑞 prime) and the oracle rejects

23 Lattice-based Cryptography – Daniele Venturi

LWE with Short Secrets

• Theorem [M01,ACPS09]: LWE is no easier if the secret is drawn
from the error distribution 𝜒
• Intuition: Finding 𝒆 equivalent to finding 𝒔 (i.e., 𝒃t − 𝒆t = 𝒔t ∙ 𝑨)

• Transformation from secret 𝒔 ∈ ℤ𝑞
𝑛 to secret ത𝒆 ← 𝜒𝑛

• Draw samples to get (ഥ𝑨, ഥ𝒃t = 𝒔t ∙ ഥ𝑨 + ത𝒆t) for square, invertible, ഥ𝑨
• Transform each additional sample 𝒂, 𝑏 = 𝒔, 𝒂 + 𝑒 to

• This maps uniform 𝒂, 𝑏 to uniform 𝒂′, 𝑏′ , and thus works for
decision LWE too

24 Lattice-based Cryptography – Daniele Venturi

𝒂′ = −ഥ𝑨−1 ∙ 𝒂, 𝑏′ = 𝑏 + ഥ𝒃, 𝒂′ = ത𝒆, 𝒂′ + 𝑒

LWE vs SIS

• SIS has many valid solutions, whereas LWE only has one

• 𝐋𝐖𝐄 ≤ 𝐒𝐈𝐒
• Given 𝒛 such that 𝑨 ∙ 𝒛 = 𝟎 from an SIS oracle, compute 𝒃t ∙ 𝒛

• Now, 𝒃t ∙ 𝒛 = 𝒆t ∙ 𝒛 is small in the LWE case, whereas 𝒃t ∙ 𝒛 is well-
spread in case 𝒃t is uniformly random

• What about the other direction?
• Not known in general

• True under quantum reductions

25 Lattice-based Cryptography – Daniele Venturi

Efficiency of LWE/SIS

26 Lattice-based Cryptography – Daniele Venturi

• Getting one random-looking scalar 𝑏𝑖 ∈ ℤ𝑞 requires an 𝑛-
dimensional inner product mod 𝑞

+

=

𝒔t

𝑨

𝒆t

𝒃t

∈ ℤ𝑞
𝑛

∈ ℤ𝑞
𝑚

Small noise ∈ ℤ𝑞
𝑚

𝑒𝑖 ≤ 𝛼𝑞; 𝛼 ≪ 1

• Can amortize each column 𝒂𝒊

over many secrets 𝒔𝒋, but the

latter still requires ෨𝑂(𝑛) work per
scalar output

• Public keys are rather large, i.e.
> 𝑛2 time to encrypt/decrypt an
𝑛-bit message

• Can we do better?

Wishful Thinking…

27 Lattice-based Cryptography – Daniele Venturi

• Main question: How to define the product ⋆ so that (𝒂, 𝒃) is
pseudorandom
• Requires care: coordinate-wise product insecure for small errors

• Answer: Let ⋆ be multiplication in a polynomial ring, e.g.
ℤ𝑞

𝑑 𝑋 /(𝑋𝑑 + 1)
• Fast and practical with the FFT: 𝑑 log 𝑑 operations mod 𝑞

• The same ring structure used in NTRU [HPS08]

+ =

∈ ℤ𝑞
𝑑

• Get 𝑑 pseudorandom scalars
from just one cheap product
operation ⋆

• Replace ℤ𝑞
𝑑×𝑑 chunks with ℤ𝑞

𝑑

⋆ 𝒆t 𝒃t𝒂t𝒔t

LWE over Rings/Modules
• Let 𝑅 = ℤ 𝑋 /(𝑋𝑑 + 1) for 𝑑 a power of 2 and 𝑅𝑞 = Τ𝑅 𝑞𝑅

• Elements of 𝑅𝑞 are degree < 𝑑 polynomials with coefficients mod 𝑞
• Operations over 𝑅𝑞 are very efficient using FFT-like algorithms

• Search LWE: Find secret vector of polynomials 𝒔 in 𝑅𝑞
𝑘 given

28 Lattice-based Cryptography – Daniele Venturi

• Each equation is 𝑑 related equations
on a secret of dimension 𝑛 = 𝑑 ∙ 𝑘
• LWE: 𝑑 = 1, 𝑘 = 𝑛
• Ring-LWE: 𝑑 = 𝑛, 𝑘 = 1
• Module-LWE: Interpolate

• Decision LWE: Distinguish (𝒂𝑖 , 𝒃𝑖)

from uniform (𝒂𝑖 , 𝒃𝑖) in 𝑅𝑞
𝑘 × 𝑅𝑞

+ =

∈ ℤ𝑞
𝑑

⋆ 𝒆𝑖
𝑡 𝒃𝑖

𝑡𝒂𝑖
𝑡𝒔t

Hardness of Ring/Module-LWE

• Theorem [LPR10]: For any 𝑅 = 𝒪𝐾

• Can we dequantize the worst-case/average-case reduction?
• The classical 𝐆𝐚𝐩𝐒𝐕𝐏 ≤ 𝐋𝐖𝐄 reduction is of little use: for the

relevant factors, 𝐆𝐚𝐩𝐒𝐕𝐏 for ideals (i.e., 𝑘 = 1) is easy

• How hard (or not) is 𝐆𝐚𝐩𝐒𝐕𝐏 on ideal/module lattices?
• For polynomial approximation no significant improvement versus

general lattices (even for ideals)

• For subexponential approximation we have better quantum
algorithms for ideals, but not for 𝑘 > 1

• Reverse reductions? Seems not without increasing 𝑘…
29 Lattice-based Cryptography – Daniele Venturi

𝑅𝑘−𝐆𝐚𝐩𝐒𝐕𝐏 ≤ 𝐬𝐞𝐚𝐫𝐜𝐡 𝑅𝑘−𝐋𝐖𝐄 ≤ 𝐝𝐞𝐜𝐢𝐬𝐢𝐨𝐧 𝑅𝑘−𝐋𝐖𝐄

Why Lattice-based Cryptography?
• Provable security

• If scheme is not secure, one can solve hard mathematical problems
• Not always happens in current implementations (e.g., RSA)

• Worst-case security
• If scheme not secure, one can break every instance of lattice problems
• Factoring and discrete log only guarantee average-case security

• Still unbroken by quantum algorithms
• No progress over the last 50 years
• But we don’t know: see https://eprint.iacr.org/2024/555

• Efficiency
• Mainly additions/multiplications, no modular exponentiations

30 Lattice-based Cryptography – Daniele Venturi

https://eprint.iacr.org/2024/555

31 Lattice-based Cryptography – Daniele Venturi

Basic Cryptographic
Applications

One-Way Functions

• Parameters 𝑚, 𝑛, 𝑞 ∈ ℤ, key 𝑨 ∈ ℤ𝑞
𝑛×𝑚

• Input 𝒙 ∈ {0,1}𝑚, output 𝑓𝑨 𝒙 = 𝑨 ∙ 𝒙

• Theorem [Ajt96]: For 𝑚 > 𝑛 log 𝑞, if 𝐒𝐈𝐕𝐏 is hard to
approximate in the worst-case, then 𝑓𝑨 is one-way

• Cryptanalysis: Given 𝑨, 𝒚, find 𝒙 such that 𝒚 = 𝑨 ∙ 𝒙
• Easy problem: find arbitrary 𝒖 such that 𝒚 = 𝑨 ∙ 𝒖

• All solutions 𝒚 = 𝑨 ∙ 𝒙 are of the form 𝒕 + ℒ⊥(𝑨)

• Requires to find small vector in 𝒕 + ℒ⊥(𝑨) or to find a lattice point
𝒗 ∈ ℒ⊥(𝑨) close to 𝒕 (average-case instance of CVP w.r.t. ℒ⊥(𝑨))

32 Lattice-based Cryptography – Daniele Venturi

Collision-resistant Hash Functions

• Given 𝑨 = 𝒂1, … , 𝒂𝑚 , define ℎ𝑨: {0,1}𝑚→ ℤ𝑞
𝑛

ℎ𝑨 𝑧1, … , 𝑧𝑚 = 𝒂1 ∙ 𝑧1 + ⋯ + 𝒂𝑚 ∙ 𝑧𝑚

• Set 𝑚 > 𝑛 log 𝑞 in order to get compression

• A collision 𝒂1 ∙ 𝑧1 + ⋯ + 𝒂𝑚 ∙ 𝑧𝑚 = 𝒂1 ∙ 𝑧1
′ + ⋯ + 𝒂𝑚 ∙ 𝑧𝑚

′ yields 𝒂1 ∙
(𝑧1−𝑧1

′) + ⋯ + 𝒂𝑚 ∙ (𝑧𝑚−𝑧𝑚
′) = 0, with 𝑧𝑚 − 𝑧𝑚

′ ∈ {−1,0,1}

33 Lattice-based Cryptography – Daniele Venturi

Collisions exists
inherently, but are

hard to find
efficiently

ℎ𝑨(∙)

𝒛

𝒛′

Commitments

• Analogy: lock message in a box, give the box, keep the key
• Later give the key to open the box

• Implementation:
• Randomized function 𝐂𝐨𝐦(𝑥; 𝑟), where 𝑥 is the message and 𝑟 is the

randomness

• To open a commitment simply reveal (𝑥, 𝑟)

• Security properties
• Hiding: 𝐂𝐨𝐦(𝑥; 𝑟) reveals nothing on 𝑥

• Binding: Can’t open 𝐂𝐨𝐦(𝑥; 𝑟) to 𝑥′ ≠ 𝑥

34 Lattice-based Cryptography – Daniele Venturi

Commitments

• Take two random SIS matrices 𝑨1, 𝑨2

• The message is 𝒙 ∈ {0,1}𝑚 and the randomness is 𝒓 ∈ {0,1}𝑚

• Commitment: 𝐂𝐨𝐦 𝒙; 𝒓 = 𝑓𝑨1,𝑨2
𝒙, 𝒓 = 𝑨1 ∙ 𝒙 + 𝑨2 ∙ 𝒓

• Hiding: 𝑨2 ∙ 𝒓 = 𝑓𝑨2
𝒓 is statistically close to uniform over ℤ𝑞

𝑛, and
thus 𝒙 is information-theoretically hidden

• Binding: Finding 𝒙, 𝒓 and 𝒙′, 𝒓′ such that 𝐂𝐨𝐦 𝒙; 𝒓 =
𝐂𝐨𝐦 𝒙′; 𝒓′ directly contradicts the collision resistance of 𝑓𝑨1,𝑨2

35 Lattice-based Cryptography – Daniele Venturi

Leftover Hash Lemma

• Let ℋ be a family of universal hash functions with domain 𝒟
and image ℐ. Then, for 𝑥 ←$ 𝒟, ℎ ←$ ℋ, and 𝑢 ←$ ℐ:

𝕊𝔻 ℎ, ℎ 𝑥 ; ℎ, 𝑢 ≤ 1/2 ∙ ℐ /|𝒟|

• Note that the function ℎ𝑨 𝒓 = 𝑨 ∙ 𝒓 𝑞 is universal
• As ∀𝒓1≠ 𝒓2: ℙ𝑨 ℎ𝑨 𝒓1 = ℎ𝑨 𝒓2 = ℙ𝑨 𝑨 ∙ 𝒓1 − 𝒓2 = 𝟎 = 𝑞−𝑛

• Hence, for 𝒓 ←$ {0,1}𝑚, 𝑨 ←$ ℤ𝑞
𝑛×𝑚, and 𝒖 ←$ ℤ𝑞

𝑛, whenever
𝑚 = 2 + 𝑛 log 𝑞 + 2𝑛

36 Lattice-based Cryptography – Daniele Venturi

𝕊𝔻 𝑨, 𝑨 ∙ 𝒓 𝑞 ; 𝑨, 𝒖 ≤ 1/2 ∙ 𝑞𝑛/2𝑚 ≤ 2−𝑛

Pseudorandom Functions [GGM84]

• Family ℱ = {𝐹𝑠: {0,1}𝑘→ 𝒟} s.t. querying 𝐹𝑠, for random 𝑠, is
indistinguishable from querying random function 𝑈

• Countless applications: secret-key encryption, message
authentication codes, secure identification, …

37 Lattice-based Cryptography – Daniele Venturi

𝐹𝑠 ← ℱ 𝑈≈

𝑥𝑖 𝐹𝑠(𝑥𝑖) 𝑥𝑖 𝑈(𝑥𝑖)

Constructing PRFs

• Heuristically: AES, etc.
• Fast, secure against known cryptanalytic attacks, not provably secure

• From any OWF [GGM84]:
• For any length-doubling PRG 𝐺 𝑠 = (𝐺0, 𝐺1), let

𝐹𝑠 𝑥1, … , 𝑥𝑘 = 𝐺𝑥𝑘
(⋯ 𝐺𝑥1

(𝑠) ⋯)

• Provably secure

• Inherently sequential (i.e., ≥ 𝑘 iterations)

• From any synthesizer [NR95,NR97,NRR00]
• Low depth: 𝑁𝐶1, 𝑁𝐶2 or 𝑇𝐶0 (i.e., 𝑂(1) depth with threshold gates)

• Provably secure

38 Lattice-based Cryptography – Daniele Venturi

Synthetisers [NR95]

• A deterministic function 𝑆: 𝒟 × 𝒟 → 𝒟 such that for any
polynomial 𝑚, and for uniform 𝑎1, … , 𝑎𝑚, 𝑏1, … , 𝑏𝑚 ∈ 𝒟

• An almost length-squaring PRG with locality

39 Lattice-based Cryptography – Daniele Venturi

𝑏1 𝑏2 ⋯

𝑎1 𝑆(𝑎1, 𝑏1) 𝑆(𝑎1, 𝑏2)

𝑎2 𝑆(𝑎2, 𝑏1) 𝑆(𝑎2, 𝑏2)

⋯

𝑆(𝑎𝑖 , 𝑏𝑗) ≈ 𝑈𝑖,𝑗

𝑏1 𝑏2 ⋯

𝑎1 𝑈1,1 𝑈1,2

𝑎2 𝑈2,1 𝑈2,2

⋯

≈

Uniform distribution
over 𝒟𝑚×𝑚

PRFs from Synthetisers [NR95]
• Base case: One-bit PRF 𝐹𝑠0,𝑠1

𝑥 = 𝑠𝑥 ∈ 𝒟

• Inductive step: Given a 𝑘-bit PRF family ℱ = {𝐹𝑠: {0,1}𝑘→ 𝒟}
define 𝐹𝑠𝐿,𝑠𝑅

: {0,1}2𝑘→ 𝒟

• Security: Every query to 𝐹𝑠𝐿
(𝑥𝐿), 𝐹𝑠𝑅

(𝑥𝑅) defines pseudorandom
inputs 𝑎1, … , 𝑎𝑚, 𝑏1, … , 𝑏𝑚 for the synthetiser

40 Lattice-based Cryptography – Daniele Venturi

𝐹𝑠𝐿,𝑠𝑅
𝑥𝐿 , 𝑥𝑅 = 𝑆(𝐹𝑠𝐿

(𝑥𝐿), 𝐹𝑠𝑅
(𝑥𝑅))

𝑆
𝑆

𝑆

𝑠1,0, 𝑠1,1
𝑠2,0, 𝑠2,1
𝑠3,0, 𝑠3,1
𝑠4,0, 𝑠4,1

𝑠1,𝑥1

𝑠1,𝑥2
𝑠1,𝑥2
𝑠1,𝑥2

𝐹{𝑠𝑖,𝑗} 𝑥1, … , 𝑥4

Synthetisers from LWE?

• Hard to tell apart 𝒂𝑖 , 𝑏𝑖 = 𝒂𝑖 , 𝒔 + 𝑒𝑖 from random 𝒂, 𝑏

• By a hybrid argument, the following are pseudorandom

𝑨𝑖 ∈ ℤ𝑞
𝑛, 𝑨𝑖 ∙ 𝑺1 + 𝑬1,1 ∈ ℤ𝑞

𝑛×𝑛, 𝑨𝑖 ∙ 𝑺2 + 𝑬2,1 ∈ ℤ𝑞
𝑛×𝑛, …

• This suggests the following synthetiser from LWE

• But synthetisers must be deterministic!

41 Lattice-based Cryptography – Daniele Venturi

𝑺1 𝑺2 ⋯

𝑨1 𝑨1 ∙ 𝑺1 + 𝑬1,1 𝑨1 ∙ 𝑺𝟐 + 𝑬1,2

𝑨2 𝑨2 ∙ 𝑺1 + 𝑬2,1 𝑨2 ∙ 𝑺2 + 𝑬2,2

⋯

Learning with Rounding [BPR12]
• Generate errors deterministically

• Round ℤ𝑞 to a sparse subset ℤ𝑝

• For 𝑝 < 𝑞, let 𝑥ہۀ 𝑝 = (𝑝/𝑞)ہۀ ∙ 𝑥 mod 𝑝

• The LWR problem: Tell apart (𝒂, 𝑏ۀ = ہ 𝒂, 𝒔 𝑝) ∈ ℤ𝑞 × ℤ𝑝from
random 𝒂, 𝑏
• LWE conceals low-order bits by adding small random error
• LWR just discards those bits instead

• 𝐋𝐖𝐄 ≤ 𝐋𝐖𝐑 for 𝑞 ≥ 𝑝 ∙ 𝑛𝜔 1 (seems 2𝑛-hard for 𝑞 ≥ 𝑝 ∙ 𝑛)
• Proof idea: w.h.p. (𝒂, ہۀ 𝒂, 𝒔 + 𝑒 𝑝) ≈ (𝒂, ہۀ 𝒂, 𝒔 𝑝) and

(𝒂, ඇඋ𝑈 ℤ𝑞 𝑝
) ≈ (𝒂, 𝑈(ℤ𝑝)) where 𝑈(ℤ𝑞) is uniform over ℤ𝑞

• Reduction with Improved parameters in [AKPW13]

42 Lattice-based Cryptography – Daniele Venturi

0

2

1

0

6

12

18

𝑝 = 3
𝑞 = 24

Synthetiser-based PRF from LWR

• Synthetiser: 𝑆: ℤ𝑞
𝑛×𝑛 × ℤ𝑞

𝑛×𝑛 → ℤ𝑝
𝑛×𝑛is 𝑆(𝑨, 𝑺) = 𝑨ہۀ ∙ 𝑺 𝑝

• Note that the range ℤ𝑝 is slightly smaller than the domain ℤ𝑞

• Construction of PRF with domain {0,1}𝑘 for 𝑘 = 2𝑑

• Tower of power moduli 𝑞𝑑 > 𝑞𝑑−1 > ⋯ > 𝑞0

• The secret key is 2𝑘 matrices 𝑺𝑖,𝑏 ∈ ℤ𝑞𝑑
𝑛×𝑛, for 𝑖 ∈ 𝑘 , 𝑏 ∈ {0,1}

• Depth 𝑑 = log 𝑘 of LWR synthetisers

• Each synthetiser is in 𝑁𝐶1, and thus the PRF is in 𝑁𝐶2

43 Lattice-based Cryptography – Daniele Venturi

ඌ ඈቔ ቓඋ ඇ𝑺1,𝑥1
∙ 𝑺2,𝑥2 𝑞2

∙ උ ඇ𝑺3,𝑥3
∙ 𝑺4,𝑥4 𝑞2 𝑞1

∙ ቔ ቓඋ ඇ𝑺5,𝑥5
∙ 𝑺6,𝑥6 𝑞2

∙ උ ඇ𝑺7,𝑥7
∙ 𝑺8,𝑥8 𝑞2 𝑞1 𝑞0

Direct Construction

• Simple direct PRF construction from DDH [NR97,NRR00]:

• This can be implemented in 𝑇𝐶0 ⊆ 𝑁𝐶0 (albeit with huge circuit)

• Direct construction from LWE
• Public moduli 𝑞 > 𝑝

• The secret key is uniform 𝑨 and short 𝑺1, … , 𝑺𝑘 over ℤ𝑞

• The PRF evaluates a rounded subset-product function

44 Lattice-based Cryptography – Daniele Venturi

𝐹𝑔,𝑠1,…,𝑠𝑘
𝑥1, … , 𝑥𝑘 = 𝑔ς𝑖 𝑠𝑖

𝑥𝑖

𝐹𝑨,𝑺1,…,𝑺𝑘
𝑥1, … , 𝑥𝑘 = ඌ ඈ𝑨 ∙ ෑ

𝑖
𝑺𝑖

𝑥𝑖

𝑝

Proof Sketch
• Similar to the 𝐋𝐖𝐄 ≤ 𝐋𝐖𝐑 proof

• Thought experiment: answer queries with

• W.h.p. ෨𝐹 𝑥 = 𝐹 𝑥 due to small error and rounding

• Using LWE replace (𝑨, 𝑨 ∙ 𝑺1 + 𝑬) with uniform (𝑨0, 𝑨1)
• New function 𝐹 𝑥 = උ ඇ𝑨𝑥1

∙ 𝑺2
𝑥2 ∙ ⋯ ∙ 𝑺𝑘

𝑥𝑘

𝑝

• Repeat for 𝑺2, … , 𝑺𝑘 to get 𝐹′…′ 𝑥 = ہ 𝑨𝑥ۀ 𝑝
= 𝑈(𝑥)

45 Lattice-based Cryptography – Daniele Venturi

෨𝐹𝑨,𝑺1,…,𝑺𝑘
𝑥1, … , 𝑥𝑘 = උ ඇ(𝑨 ∙ 𝑺1

𝑥1 + 𝑥1 ∙ 𝑬) ∙ 𝑺2
𝑥2 ∙ ⋯ ∙ 𝑺𝑘

𝑥𝑘

𝑝

= ቝ𝑨 ∙ ෑ
𝑖=1

𝑘

𝑺𝑖
𝑥𝑖 + 𝑥1 ∙ 𝑬 ∙ ෑ

𝑖=2

𝑘

𝑺𝑖
𝑥𝑖

𝑝

46 Lattice-based Cryptography – Daniele Venturi

NIST Standards

47 Lattice-based Cryptography – Daniele Venturi

Falcon

Digital Signatures

• Syntax Π = (𝐊𝐆𝐞𝐧, 𝐒𝐢𝐠𝐧, 𝐕𝐫𝐟𝐲)
• 𝐊𝐆𝐞𝐧(1𝜆): Takes the security parameter 𝜆 ∈ ℕ, and outputs (𝑣𝑘, 𝑠𝑘)

• 𝐒𝐢𝐠𝐧(𝑠𝑘, 𝜇): Takes plaintext 𝜇, and outputs a signature 𝜎

• 𝐕𝐫𝐟𝐲(𝑣𝑘, 𝜇, 𝜎): Takes plaintext 𝜇 and signature 𝜎, and outputs a bit

• Correctness: ∀𝜆 ∈ ℕ, ∀ 𝑣𝑘, 𝑠𝑘 ∈ 𝐊𝐆𝐞𝐧(1𝜆), ∀𝜇

48 Lattice-based Cryptography – Daniele Venturi

𝜇
Alice Bob𝐒𝐢𝐠𝐧 𝐕𝐫𝐟𝐲

𝑠𝑘 𝑣𝑘

0/1𝜇, 𝜎

signature

ℙ[𝐕𝐫𝐟𝐲 𝑣𝑘, 𝐒𝐢𝐠𝐧 𝑠𝑘, 𝜇 = 1]=1

Lattice Trapdoors

• Recall: Lattice-based one-way functions

• Task: Invert 𝑓𝑨

• Find the unique 𝒔 (or 𝒆) such that 𝑓𝑨 𝒔, 𝒆 = 𝒔t ∙ 𝑨 + 𝒆t mod 𝑞

• Given 𝒖 = 𝑓𝑨 𝒙′ = 𝑨 ∙ 𝒙′ mod 𝑞, sample random 𝒙 ← 𝑓𝑨
−1(𝒖) with

probability proportional to exp(− 𝒙 2/𝑠2)

• How? Via a strong trapdoor for𝑨 (a short basis of ℒ⊥(𝑨))
• Deeply studied question [Babai86,Ajtai99,Klein01,GPV08,AP09,P10]

49 Lattice-based Cryptography – Daniele Venturi

𝑓𝑨 𝒙 = 𝑨 ∙ 𝒙 mod 𝑞 ∈ ℤ𝑞
𝑛 𝑓𝑨 𝒔, 𝒆 = 𝒔t ∙ 𝑨 + 𝒆t mod 𝑞 ∈ ℤ𝑞

𝑚

(short 𝒙, surjective) (short 𝒆, injective)

A Different Kind of Trapdoor [MP12]
• Drawbacks of previous solutions

• Generating 𝑨 with short basis is complex and slow
• Inversion algorithms trade-off quality (i.e., length of basis vectors which

depends on the Gaussian std parameter 𝑠) for efficiency

• Alternative: The trapdoor is not a basis
• But just as powerful
• Simpler and faster

• Overview of method
• Start with fixed, public, lattice defined by gadget matrix 𝑮 which admits

very fast, and parallel, algorithms for 𝑓𝑮
−1

• Randomize 𝑮 into 𝑨 via nice unimodular transform (the trapdoor)
• Reduce 𝑓𝑨

−1 to 𝑓𝑮
−1 plus some pre/post-processing

50 Lattice-based Cryptography – Daniele Venturi

Step 1: The Gadget Matrix

• Let 𝑞 = 2𝑘 and take 𝒈 = [1 2 ⋯ 2𝑘−1] ∈ ℤ𝑞
1×𝑘

• To invert 𝑓𝒈: ℤ𝑞 × ℤ𝑘 → ℤ𝑞
𝑘

• Get lsb of 𝑠 from 2𝑘−1𝑠 + 𝑒𝑘−1, then repeat for the next bits of 𝑠

• Works when 𝑒𝑘−1 ∈ [−𝑞/4, 𝑞/4)

• To sample Gaussian preimage for 𝑢 = 𝑓𝒈 𝒙 = 𝒈, 𝒙
• For 𝑖 ∈ [0, 𝑘 − 1], choose 𝑥𝑖 ← (2ℤ + 𝑢) and let 𝑢 ← (𝑢 − 𝑥𝑖)/2 ∈ ℤ

• E.g., 𝑘 = 2: 𝑥0 ← (2𝑧0 + 𝑢), 𝑢 ← (𝑢 − 2𝑧0 − 𝑢)/2 = −𝑧0, 𝑥1 ←
(2𝑧1 − 𝑧0), 𝒈, 𝒙 = 2𝑧0 + 𝑢 + 2 2𝑧1 − 𝑧0 = 𝑢 + 4𝑧1 = 𝑢 mod 4

51 Lattice-based Cryptography – Daniele Venturi

𝑓𝒈 𝑠, 𝒆 = 𝑠 ∙ 𝒈 + 𝒆 = 𝑠 + 𝑒0 2𝑠 + 𝑒1 ⋯ 2𝑘−1𝑠 + 𝑒𝑘−1 mod 𝑞

Step 1: The Gadget Matrix 𝑮

• Alternative view: The lattice ℒ⊥(𝒈) has basis

𝑺 =

2
−1 2

−1 ⋱
⋱ 2

−1 2

∈ ℤ𝑘×𝑘 , with ෨𝑺 = 2 ∙ 𝑰𝑘

• The above inversion algorithms are special cases of the randomized
nearest-plan algorithm [Bab86,Kle01,GPV08]

• Define 𝑮 = 𝑰𝑛⨂𝒈 ∈ ℤ𝑛×𝑛𝑘 (where ⨂ is the tensor product)
• Computing 𝑓𝑮

−1 reduces to 𝑛 parallel calls to 𝑓𝒈
−1

• Also applies to 𝑯 ∙ 𝑮, for any invertible 𝑯 ∈ ℤ𝑞
𝑛×𝑛

52 Lattice-based Cryptography – Daniele Venturi

Step 2: Randomize 𝑮

• Define semi-random [ഥ𝑨|𝑮] for uniform ഥ𝑨 ∈ ℤ𝑞
𝑛× ഥ𝑚

• It can be seen that inverting 𝑓[ഥ𝑨|𝑮]
−1 reduces to inverting 𝑓𝑮

−1 [CHKP10]

• Choose a short Gaussian 𝑹 ∈ ℤ ഥ𝑚×𝑛 log 𝑞 and let

• 𝑨 is uniform because, by the leftover hash lemma, [ഥ𝑨|ഥ𝑨𝑹] is
statistically close to uniform when ഥ𝑚 ≈ 𝑛 log 𝑞

• Alternatively, [𝑰 ഥ𝑨 − ഥ𝑨 ∙ 𝑹1 + 𝑹2] is pseudorandom under the LWE
assumption (in normal form)

53 Lattice-based Cryptography – Daniele Venturi

𝑨 = [ഥ𝑨|𝑮] ∙
𝑰 𝑹

𝑰
= [ഥ𝑨|𝑮 − ഥ𝑨𝑹]

A New Trapdoor Notion
• We constructed 𝑨 = [ഥ𝑨|𝑮 − ഥ𝑨𝑹]

• Say that 𝑹 is a trapdoor for 𝑨 with tag 𝑯 ∈ ℤ𝑞
𝑛×𝑛 (invertible) if

• The quality of 𝑹 is 𝑠1 𝑹 = max
𝒖: 𝒖 =1

𝑹 ∙ 𝒖

• Fact: 𝑠1 𝑹 ≈ (rows + cols) ∙ 𝑟 for Gaussian entries w/ std dev 𝑟
• Also 𝑹 is a trapdoor for 𝑨 − [𝟎|𝑯′ ∙ 𝑮] with tag 𝑯 − 𝑯′ [ABB10]

• Relating new and old trapdoors
• Given basis 𝑺 for ℒ⊥(𝑮) and trapdoor 𝑹 for 𝑨, one can efficiently

construct basis 𝑺𝑨 for ℒ⊥(𝑮) where ෨𝑺𝑨 ≤ (𝑠1 𝑹 + 1) ∙ ෨𝑺

54 Lattice-based Cryptography – Daniele Venturi

𝑨 ∙
𝑹
𝑰

= 𝑯 ∙ 𝑮

Step 3: Reduce 𝑓𝑨
−1 to 𝑓𝑮

−1

• Let 𝑹 be a trapdoor for 𝑨 with tag 𝑯 = 𝑰: 𝑨 ∙
𝑹
𝑰

= 𝑮

• Inverting LWE

• Given 𝒃t = 𝒔t ∙ 𝑨 + 𝒆t, recover 𝒔 from 𝒃t ∙
𝑹
𝑰

= 𝒔t ∙ 𝑮 + 𝒆t ∙
𝑹
𝑰

• Works if each entry of 𝒆t ∙
𝑹
𝑰

∈ [−𝑞/4, 𝑞/4)

• Inverting SIS

• Given 𝒖, sample 𝒛 ← 𝑓𝑮
−1(𝒖) and output 𝒙 =

𝑹
𝑰

∙ 𝒛 ∈ 𝑓𝑨
−1 (𝒖)

• Indeed, 𝑨 ∙ 𝒙 = 𝑮 ∙ 𝒛 = 𝒖

55 Lattice-based Cryptography – Daniele Venturi

𝜮 = 𝔼𝒙[𝒙 ∙ 𝒙t] = 𝔼𝒛[𝑹 ∙ 𝒛 ∙ 𝒛t ∙ 𝑹t] ≈ 𝑹 ∙ 𝑹t

Leaks about 𝑹!

Step 3: Perturbation Method [P10]

• To fix the covariance
• Generate perturbation vector 𝒑 with covariance 𝑠2 ∙ 𝑰 − 𝑹 ∙ 𝑹t

• Sample spherical 𝒛 such that 𝑮 ∙ 𝒛 = 𝒖 − 𝑨 ∙ 𝒑

• Output 𝒙 = 𝒑 +
𝑹
𝑰

∙ 𝒛

56 Lattice-based Cryptography – Daniele Venturi

𝑨 ∙ 𝒙 = 𝑨 ∙ 𝒑 + 𝑨 ∙
𝑹
𝑰

∙ 𝒛 = 𝑨 ∙ 𝒑 + 𝑮 ∙ 𝒛 = 𝒖

+ =

𝜮1 𝜮2 = 𝑠2 ∙ 𝑰 − 𝜮1 𝜮 = 𝑠2 ∙ 𝑰

𝒖t ∙ 𝜮2 ∙ 𝒖 = 𝑠2 − 𝒖t ∙ 𝜮1 ∙ 𝒖 > 0

Falcon: Digital Signatures from SIS
• Generate uniform 𝑣𝑘 = 𝑨 with trapdoor 𝑠𝑘 = 𝑻

• To sign 𝜇, use 𝑻 to sample 𝜎 = 𝒙 ∈ ℤ𝑚 such that 𝑨 ∙ 𝒙 = 𝐻(𝜇),
where 𝐻 is a public hash function
• Recall that 𝒙 is drawn from a Gaussian distribution, which reveals

nothing about the trapdoor 𝑻

• To verify (𝜇, 𝜎 = 𝒙) under 𝑣𝑘 = 𝑨 simply check 𝑨 ∙ 𝒙 = 𝐻(𝜇)
and that 𝒙 is sufficiently short

• Security: Forging a signature for a new message 𝜇∗ requires
finding a short 𝒙∗ such that 𝑨 ∙ 𝒙∗ = 𝐻(𝜇∗)
• This is equivalent to solving the SIS problem
• Signatures queries do not help because they reveal nothing about the

trapdoor 𝑻

57 Lattice-based Cryptography – Daniele Venturi

58 Lattice-based Cryptography – Daniele Venturi

Crystals-Dilithium

Canonical Identification Schemes

• Completeness: The honest prover convinces the honest verifier
(with all but a negligible probability)

• Passive Security: No (efficient) malicious prover knowing only
𝑝𝑘 can convince the honest verifier
• Even in case the attacker knows many accepting transcripts

corresponding to honest protocol executions

59 Lattice-based Cryptography – Daniele Venturi

𝛼

𝑝𝑘, 𝑠𝑘

𝛽

𝛾

𝛽 ←$ ℬ

𝑝𝑘

The Fiat-Shamir Transform

• Given a canonical ID scheme, we can derive a signature scheme
as follows:
• Alice obtains σ = (𝛼, 𝛾) from the prover, using the secret key 𝑠𝑘 and

choosing 𝛽 = 𝐻(𝑥, 𝛼)

• Bob checks that (𝛼, 𝛽, 𝛾) is a valid transcript, with 𝛽 = 𝐻(𝑥, 𝛼)

60 Lattice-based Cryptography – Daniele Venturi

𝑝𝑘, 𝑠𝑘 𝑝𝑘

Hash function 𝐻

𝛼

𝑝𝑘, 𝑠𝑘 𝑝𝑘
𝛽 = 𝐻(𝑥, 𝛼)

𝛾

𝛽
FS Transform

𝜎 = (𝛼, 𝛾)

The Fiat-Shamir Transform

• Remark: The original proof requires to model 𝐻 as an ideal hash
function (random oracle)
• It is debatable in the community what such a proof means in practice

• Can we prove security in the plain model (i.e., no random
oracles)?
• Many impossibility results for general ID schemes
• Possible for some classes of ID schemes assuming so-called

correlation intractability

61 Lattice-based Cryptography – Daniele Venturi

Theorem [FS86]. If the ID scheme is passively secure, the
signature derived via the Fiat-Shamir transform is UF-CMA

Sufficient Criteria for Passive Security

• One can show the following criteria are sufficient for achieving
passive security:
• Special soundness: Given any 𝑝𝑘 and two accepting transcripts

(𝛼, 𝛽, 𝛾) and (𝛼, 𝛽′, 𝛾′) for 𝑝𝑘 with 𝛽 ≠ 𝛽′, there is a polynomial-time
algorithm outputting 𝑠𝑘

• HVZK: Honest proofs reveal nothing about the secret key sk

62 Lattice-based Cryptography – Daniele Venturi

𝛼

𝑝𝑘, 𝑠𝑘

𝛽

𝛾

𝛽 ←$ ℬ

𝑝𝑘

Proofs of Knowledge

• The special soundness property implies that any successful
prover must essentially know the secret key

• In fact, any such prover can be used to extract the secret key:
• Run the prover upon input 𝑝𝑘 in order to obtain a transcript (𝛼, 𝛽, 𝛾)

• Rewind the prover after it already sent 𝛼 and forward it another
random challenge 𝛽′, which yields a transcript (𝛼, 𝛽′, 𝛾′)

• As long as 𝛽 ≠ 𝛽′, special soundness allows us to obtain 𝑠𝑘

• The above can be formalized, but the proof requires some care
• Because the transcripts (𝛼, 𝛽, 𝛾) and (𝛼, 𝛽′, 𝛾′) are correlated

63 Lattice-based Cryptography – Daniele Venturi

Honest-Verifier Zero-Knowledge

• How do we formalize that a trascript reveals nothing on 𝑠𝑘?
• This is tricky: transcripts shall not reveal even one bit of 𝑠𝑘

• Require that honest transcripts can be efficiently simulated
given just 𝑝𝑘 (but not 𝑠𝑘)
• Whatever the verifier could compute via the protocol, he could have

computed by talking to himself (i.e., by running the simulator)

• A canonical ID scheme is perfect honest-verifier zero-
knowledge (HVZK) if ∃ PPT 𝒮 such that:

64 Lattice-based Cryptography – Daniele Venturi

𝑝𝑘, 𝑠𝑘, 𝒮 𝑝𝑘 ≡ 𝑝𝑘, 𝑠𝑘, 𝒫 𝑝𝑘, 𝑠𝑘 , 𝒱 𝑝𝑘

Canonical ID Scheme from Discrete Log

65 Lattice-based Cryptography – Daniele Venturi

• Special HVZK: Upon input 𝑝𝑘 = 𝑥, simulator 𝒮 outputs (𝛼, 𝛽, 𝛾)
such that 𝛼 = 𝑔𝛾/𝑥𝛽 and 𝛽, 𝛾 ←$ ℤ𝑞

• Special soundness: Assume we are given two accepting
transcripts (𝛼, 𝛽, 𝛾) and (𝛼, 𝛽′, 𝛾′) for 𝑝𝑘 = 𝑥, with 𝛽 ≠ 𝛽′
• This implies 𝑔𝛾−𝛾′ = 𝑥𝛽−𝛽′

• Thus, 𝑤 = (𝛾 − 𝛾′) ∙ (𝛽 − 𝛽′)−1 is the discrete logarithm of 𝑥

𝛼 = 𝑔𝑎

𝑥, 𝑤

𝑎 ←$ ℤ𝑞

𝛾 = 𝛽 ∙ 𝑤 + 𝑎
𝛽

𝛾

𝛽 ←$ ℤ𝑞

Check 𝑔𝛾 = 𝑥𝛽 ∙ 𝛼

params = (𝔾, 𝑔, 𝑞) 𝑥 = 𝑔𝑤

Let’s Try the Same Idea using Lattices

66 Lattice-based Cryptography – Daniele Venturi

• HVZK: Upon input 𝑝𝑘 = (𝑨, 𝒕), simulator 𝒮 outputs (𝜶, 𝛽, 𝜸)
such that 𝜶 = 𝑨 ∙ 𝜸 − 𝛽 ∙ 𝒕 and 𝛽 ←$ ℤ𝑞 , 𝜸 ←$ ℤ𝑞

𝑚

• Special soundness: Assume we are given two accepting
transcripts(𝜶, 𝛽, 𝜸) and(𝜶, 𝛽′, 𝜸′) for 𝑝𝑘 = (𝑨, 𝒕), with 𝛽 ≠ 𝛽′
• This implies 𝑨 ∙ 𝜸 − 𝜸′ = (𝛽 − 𝛽′) ∙ 𝒕

• Thus, 𝒔 = 𝜸 − 𝜸′ ∙ (𝛽 − 𝛽′)−1 is the solution for 𝑨 ∙ 𝒔 = 𝒕

𝜶 = 𝑨 ∙ 𝒖

(𝑨, 𝒕), 𝒔

𝒖 ←$ ℤ𝑞
𝑚

𝜸 = 𝛽 ∙ 𝒔 + 𝒖
𝛽

𝜸

𝛽 ←$ ℤ𝑞

Check 𝑨 ∙ 𝜸 = 𝛽 ∙ 𝒕 + 𝜶

params
= 𝑞

𝑨 ∙ 𝒔 = 𝒕

Many Problems…

• The challenge space is small
• 𝑞 ≈ 212 for encryption

• 𝑞 ≈ 230 for signatures
• 𝑞 ≈ 232 for advanced applications

• This means that a successful prover can just guess 𝛽

• The vector 𝒔 we extract is not guaranteed to be small
• Recall that removing the requirement of 𝒔 being small makes lattice

problems trivial

• Solution: Choose small 𝒖, 𝛽 and repeat the protocol in parallel

67 Lattice-based Cryptography – Daniele Venturi

Modified Protocol (Take 1)

68 Lattice-based Cryptography – Daniele Venturi

𝜶1, … , 𝜶𝑘

(𝑨, 𝒕), 𝒔

𝒖1, … , 𝒖𝑘 ←$ {0,1}𝑚

𝜶𝑗 = 𝑨 ∙ 𝒖𝑗

𝜸𝑗 = 𝛽𝑗 ∙ 𝒔 + 𝒖𝑗

𝛽1, … , 𝛽𝑘

𝜸1, … , 𝜸𝑘

𝛽𝑗 ←$ {0,1}

Check 𝑨 ∙ 𝜸𝑗 = 𝛽𝑗 ∙ 𝒕 + 𝜶𝑗

𝑨 ∙ 𝒔 = 𝒕

• The verifier checks the above ∀𝑗 = 1, … , 𝑘 and that the
coefficients of each 𝜸𝑗 are small (i.e., in {0,1,2})

• Special soundness: Given 𝑨 ∙ 𝜸𝑗 = 𝛽𝑗 ∙ 𝒕 + 𝜶𝑗 and 𝑨 ∙ 𝜸𝑗
′ =

𝛽𝑗
′ ∙ 𝒕 + 𝜶𝑗 with 𝛽𝑗 ≠ 𝛽𝑗

′, extract 𝒔 = 𝜸𝑗 − 𝜸𝑗
′ ∙ (𝛽𝑗 − 𝛽𝑗

′)−1

• The elements of 𝜸𝑗 − 𝜸𝑗
′ are in {−2, −1,0,1,2}, and 𝛽𝑗 − 𝛽𝑗

′ is in
{−1,1}, so 𝒔 also lies in {−2, −1,0,1,2}

Insecurity of the Protocol

• There are some caveats:
• We extracted a slightly bigger secret

• We need to repeat for 𝑘 = 128 or 𝑘 = 256 times

• Even worse, the protocol does not satisfy HVZK
• Suppose that the challenge is 𝛽 = 1

69 Lattice-based Cryptography – Daniele Venturi

𝟎 𝟏 𝟐 𝟏 𝟐 𝟎 𝟏 𝟎 𝟏 𝟏

𝟎 ? 𝟏 ? 𝟏 𝟎 ? 𝟎 ? ?

𝟎 ? 𝟏 ? 𝟏 𝟎 ? 𝟎 ? ?

+

=

𝛽 ∙ 𝒔 = 𝒔 has coefficients in {0,1}

𝒖 has coefficients in {0,1}

𝜸 coefficients

Possible Fix?

• Maybe we can sample 𝒖 from a larger domain?
• Suppose that the challenge is 𝛽 = 1

• Whenever a 𝜸 coefficient is 0 or 6 we know that 𝒔 is 0 or 1, but the
other coefficients are hidden (i.e., they could be equally 0 or 1)

• So, 𝒔 only effects the probability that a 𝜸 coefficient is 0 or 6

70 Lattice-based Cryptography – Daniele Venturi

𝟎 𝟒 𝟐 𝟑 𝟔 𝟓 𝟎 𝟐 𝟒 𝟏

𝟎 ? ? ? 𝟓 ? 𝟎 ? ? ?

𝟎 ? ? ? 𝟏 ? 𝟎 ? ? ?

+

=

𝛽 ∙ 𝒔 = 𝒔 has coefficients in {0,1}

𝒖 has coefficients in {0,1,2,3,4,5}

𝜸 coefficients

Possible Fix?

• Maybe we can sample 𝒖 from a larger domain?
• Suppose that the challenge is 𝛽 = 1

• In other words, the coefficients 1,2,3,4,5 are equally likely to appear
regardless of the secret key

• Natural idea: Send 𝜸 only when all the coefficients are in this range

71 Lattice-based Cryptography – Daniele Venturi

𝟎 𝟒 𝟐 𝟑 𝟔 𝟓 𝟎 𝟐 𝟒 𝟏

𝟎 ? ? ? 𝟓 ? 𝟎 ? ? ?

𝟎 ? ? ? 𝟏 ? 𝟎 ? ? ?

+

=

𝛽 ∙ 𝒔 = 𝒔 has coefficients in {0,1}

𝒖 has coefficients in {0,1,2,3,4,5}

𝜸 coefficients

In General…

• Suppose 𝒔 has coefficients in {0,1, … , 𝑎} and that 𝒖 has
coefficients in 0,1, … , 𝑏 − 1
• Here, 𝑏 > 𝑎

• Then, for all 𝑎 ≤ 𝑖 < 𝑏, we have ℙ 𝑠 + 𝑢 = 𝑖 = 1/𝑏
• Moreover, there are 𝑏 − 𝑎 such 𝑖’s and thus 1 − 𝑎/𝑏 probability of

keeping the value 𝑠 secret

• The probability that a 𝜸 coefficient is in 1, … , 𝑏 − 1 is 1 − 1/𝑏
• The probability that they all are is (1 − 1/𝑏)𝑚

• The probability that they all are for all 𝜸1, … , 𝜸𝑘 is (1 − 1/𝑏)𝑚𝑘

• By setting 𝑏 = 𝑚𝑘, we get (1 − 1/𝑏)𝑚𝑘≈ 1/𝑒

72 Lattice-based Cryptography – Daniele Venturi

Modified Protocol (Take 2)

73 Lattice-based Cryptography – Daniele Venturi

𝜶1, … , 𝜶𝑘

(𝑨, 𝒕), 𝒔

𝒖1, … , 𝒖𝑘 ←$ {0, … , 𝑚𝑘}𝑚

𝜶𝑗 = 𝑨 ∙ 𝒖𝑗

𝜸𝑗 = 𝛽𝑗 ∙ 𝒔 + 𝒖𝑗

𝛽1, … , 𝛽𝑘

𝜸1, … , 𝜸𝑘

𝛽𝑗 ←$ {0,1}

Check 𝑨 ∙ 𝜸𝑗 = 𝛽𝑗 ∙ 𝒕 + 𝜶𝑗

𝑨 ∙ 𝒔 = 𝒕

• The prover checks whether any of the coefficients contained
in 𝜸𝑗 is 0 or 𝑚𝑘 + 1
• If it is, abort and restart the protocol

• The verifier checks the above ∀𝑗 = 1, … , 𝑘 and that the
coefficients of each 𝜸𝑗 are small (i.e., in {0, … , 𝑚𝑘})

Modified Protocol (Take 2)

74 Lattice-based Cryptography – Daniele Venturi

𝜶1, … , 𝜶𝑘

(𝑨, 𝒕), 𝒔

𝒖1, … , 𝒖𝑘 ←$ {0, … , 𝑚𝑘}𝑚

𝜶𝑗 = 𝑨 ∙ 𝒖𝑗

𝜸𝑗 = 𝛽𝑗 ∙ 𝒔 + 𝒖𝑗

𝛽1, … , 𝛽𝑘

𝜸1, … , 𝜸𝑘

𝛽𝑗 ←$ {0,1}

Check 𝑨 ∙ 𝜸𝑗 = 𝛽𝑗 ∙ 𝒕 + 𝜶𝑗

𝑨 ∙ 𝒔 = 𝒕

• Special soundness: Given 𝑨 ∙ 𝜸𝑗 = 𝛽𝑗 ∙ 𝒕 + 𝜶𝑗 and 𝑨 ∙ 𝜸𝑗
′ =

𝛽𝑗
′ ∙ 𝒕 + 𝜶𝑗 with 𝛽𝑗 ≠ 𝛽𝑗

′, extract 𝒔 = 𝜸𝑗 − 𝜸𝑗
′ ∙ (𝛽𝑗 − 𝛽𝑗

′)−1

• The elements of 𝜸𝑗 − 𝜸𝑗
′ are in {−𝑚𝑘, … 𝑚𝑘}, and 𝛽𝑗 − 𝛽𝑗

′ is in
{−1,1}, so 𝒔 also lies in {−𝑚𝑘, … , 𝑚𝑘}

• HVZK: Yes, as now 𝜸𝑗 never depends on 𝒔
• Caveat: What is 𝜶𝑗 in case of abort?

Modified Protocol (Take 3)

75 Lattice-based Cryptography – Daniele Venturi

𝛼 = 𝐇 𝜶1, … , 𝜶𝑘

(𝑨, 𝒕), 𝒔

𝒖1, … , 𝒖𝑘 ←$ {0, … , 𝑚𝑘}𝑚

𝜶𝑗 = 𝑨 ∙ 𝒖𝑗

𝜸𝑗 = 𝛽𝑗 ∙ 𝒔 + 𝒖𝑗

𝛽1, … , 𝛽𝑘

𝜸1, … , 𝜸𝑘

𝛽𝑗 ←$ {0,1}

Check 𝑨 ∙ 𝜸𝑗 = 𝛽𝑗 ∙ 𝒕 + 𝜶𝑗

𝑨 ∙ 𝒔 = 𝒕

• The verifier checks the above ∀𝑗 = 1, … , 𝑘 and that the
coefficients of each 𝜸𝑗 are small (i.e., in {0, … , 𝑚𝑘})

• But now it also additionally checks that

• In case of abort, the HVZK simulator can still send a random 𝛼

𝛼 = 𝐇 𝑨 ∙ 𝜸1 − 𝛽1 ∙ 𝒕, … , 𝑨 ∙ 𝜸𝑘 − 𝛽𝑘 ∙ 𝒕

In Practice

• The previous protocol still needs to be repeated in parallel 𝑘 =
128 or 256 times
• And this is the best one can get for arbitrary lattices

• However:
• The proof size for one equation is roughly the same as the proof size

for many equations (amortization with logarithmic growth)

• Working with polynomial rings instead of ℤ𝑞 allows for one-shot
approximate proofs (i.e., the coefficients of 𝒔 are small)

• Using more complex techniques, one obtains almost one-shot exact
proofs (i.e., the coefficients of 𝒔 are in {0,1})

76 Lattice-based Cryptography – Daniele Venturi

77 Lattice-based Cryptography – Daniele Venturi

Crystals-Kyber

Public-Key Encryption

• Proposed by Diffie and Hellman in their seminal paper [DH76]

• First realization by Rivest, Shamir and Adelman based on the
hardness of factoring [RSA78]

78 Lattice-based Cryptography – Daniele Venturi

𝑚
Alice Bob𝐄𝐧𝐜 𝐃𝐞𝐜

𝑝𝑘 𝑠𝑘

𝑚𝑐

ciphertext

Chosen-Plaintext Attack (CPA) Security

79 Lattice-based Cryptography – Daniele Venturi

𝑥0, 𝑥1

𝑐

guess b

𝑝𝑘

𝑝𝑘, 𝑠𝑘, random b
𝑐 ← 𝐄𝐧𝐜(𝑝𝑘, 𝑥𝑏)

Eve

Challenger

• The attacker cannot even guess a single bit of the plaintext
• Remember that the messages are chosen by the adversary

• CPA security implies hardness of recovering the message

• CPA security implies hardness of recovering the secret key

Regev PKE [Reg05]

• Key Generation: 𝑝𝑘 = (𝑨, 𝒃) and 𝑠𝑘 = 𝒔, where 𝒃t = 𝒔t ∙ 𝑨 + 𝒆t and
𝒔 ∈ ℤ𝑞

𝑛, 𝑨 ∈ ℤ𝑞
𝑛×𝑚

• Encryption: The encryption of 𝑥 w.r.t. 𝑝𝑘 is made of two parts
• Ciphertext preamble 𝒄0 = 𝑨 ∙ 𝒓 for random 𝒓 ∈ {0,1}𝑚

• Ciphertext payload 𝑐1 = 𝒃t ∙ 𝒓 + 𝑥 ∙ 𝑞/2

• Bob outputs 𝑐1 − 𝒔t ∙ 𝒄0 ≈ 𝑥 ∙ 𝑞/2

• Security: By LWE we can switch (𝑨, 𝒃) with (𝑨, 𝒃) for uniformly
random 𝒃t

• By the leftover hash lemma, we can finally replace 𝒄0 with uniformly
random 𝒄0, so that 𝑐1 hides 𝑥 information theoretically

80 Lattice-based Cryptography – Daniele Venturi

Dual Regev [GPV08]

• Key Generation: 𝑝𝑘 = (𝑨, 𝒖) and 𝑠𝑘 = 𝒓, where 𝒖 = 𝑨 ∙ 𝒓 and 𝒓 ∈
{0,1}𝑚, 𝑨 ∈ ℤ𝑞

𝑛×𝑚

• Encryption: The encryption of 𝑥 w.r.t. 𝑝𝑘 is made of two parts
• Ciphertext preamble 𝒄0 = 𝒃t = 𝒔t ∙ 𝑨 + 𝒆t for random 𝒔 ∈ ℤ𝑞

𝑛

• Ciphertext payload 𝑐1 = 𝒔t ∙ 𝒖 + 𝑒′ + 𝑥 ∙ 𝑞/2

• Bob outputs 𝑐1 − 𝒄0 ∙ 𝒓 ≈ 𝑥 ∙ 𝑞/2

• Security: By the leftover hash lemma, we can switch 𝒖 with
uniformly random 𝒖
• By LWE we can switch (𝒄0, 𝑐1) with uniformly random (𝒄0, 𝑐1)

81 Lattice-based Cryptography – Daniele Venturi

Primal versus Dual

• Public key
• Primal: 𝑝𝑘 is pseudorandom with unique 𝑠𝑘

• Dual: 𝑝𝑘 is statistically random with many possible 𝑠𝑘

• Ciphertext
• Primal: A fresh LWE sample with many possible coins

• Dual: Multiple LWE samples with unique coins

• Security
• Primal: Encrypting with uniform 𝑝𝑘 induces random ciphertext

• Dual: By LWE can switch the ciphertext to random

• Efficiency: The matrix 𝐴 can be shared by different users

82 Lattice-based Cryptography – Daniele Venturi

Most Efficient [LP11]

• Key Generation: 𝑝𝑘 = (𝑨, 𝒖) and 𝑠𝑘 = 𝒔, where 𝒖t = 𝒔t ∙ 𝑨 + 𝒆t

and 𝒔 ∈ 𝜒𝑛, 𝑨 ∈ ℤ𝑞
𝑛×𝑛

• Encryption: The encryption of 𝑥 w.r.t. 𝑝𝑘 is made of two parts
• Ciphertext preamble 𝒄0 = 𝑨 ∙ 𝒓 + 𝒆′ for 𝒓 ∈ 𝜒𝑛

• Ciphertext payload 𝑐1 = 𝒖t ∙ 𝒓 + 𝑒′ + 𝑥 ∙ 𝑞/2

• Bob outputs 𝑐1 − 𝒔t ∙ 𝒄0 ≈ 𝑥 ∙ 𝑞/2

• Security: By LWE we can switch (𝑨, 𝒖) with (𝑨, 𝒖) for uniformly
random 𝒖
• This requires LWE with secrets from the error distribution

• Next, we can replace (𝒄0, 𝑐1) with uniformly random (𝒄0, 𝑐1)

83 Lattice-based Cryptography – Daniele Venturi

Chosen-Ciphertext Attack (CCA) Security

84 Lattice-based Cryptography – Daniele Venturi

𝑥0, 𝑥1

𝑐

guess b

𝑝𝑘

𝑝𝑘, 𝑠𝑘, random b
𝑚′ = 𝐃𝐞𝐜(𝑠𝑘, 𝑐′)

Eve

Challenger

• The above notion captures a strong non-malleability guarantee
• No attacker can maul a ciphertext 𝑐 for message 𝑚 into a ciphertext ǁ𝑐

for message 𝑚 related to 𝑚
• The gold standard for security of PKE in practice

𝑐′
𝑚′

𝑐′ ≠ 𝑐
𝑚′

𝑐 ← 𝐄𝐧𝐜(𝑝𝑘, 𝑥𝑏)

Fujisaki-Okamoto Transform

• The FO transform [FO99,FO13] turns passively (IND-CPA) secure
PKE schemes into actively (IND-CCA) secure ones
• The transformation requires two hash functions (random oracles)

• The obtained scheme is better understood as a key encapsulation
mechanism (KEM)

• We can combine a KEM with an SKE scheme to get a PKE scheme

85 Lattice-based Cryptography – Daniele Venturi

𝑘
Alice Bob𝐄𝐧𝐜 𝐃𝐞𝐜

𝑝𝑘 𝑠𝑘

𝑘𝑐

ciphertext

One-Wayness of PKE

86 Lattice-based Cryptography – Daniele Venturi

𝑚′

𝑝𝑘, 𝑐∗

𝑝𝑘, 𝑠𝑘
𝑚∗ ← ℳ

𝑐∗ ← 𝐄𝐧𝐜(𝑝𝑘, 𝑚∗)

Eve

Challenger

• OW-CPA: PKE makes it hard to guess the message
• The message is uniformly random and unknown to the attacker

• OW-PCA: As before but now the attacker can query a plaintext-
checking oracle which allows to check if 𝐃𝐞𝐜 𝑠𝑘, 𝑐 = 𝑚

𝑚, 𝑐
yes/no

Modularization of the FO Transform

• We can view FO as the concatenation of two transforms 𝐔 ∘ 𝐓
• The first transformation takes care of derandomization and allows to

go from IND-CPA to OW-PCA

• The second transformation takes care of hashing and allows to go
from OW-PCA to IND-CCA

87 Lattice-based Cryptography – Daniele Venturi

𝐏𝐊𝐄
IND-CPA

𝐏𝐊𝐄
OW-CPA

𝐏𝐊𝐄
OW-PCA

𝐊𝐄𝐌
IND-CCA

Transformation 𝐓: From IND-CPA to OW-PCA

• Encryption becomes deterministic (the randomness is 𝐆(𝑚))

• Decryption re-encrypts 𝑚′ using randomness 𝐆(𝑚′) and
outputs 𝑚′ if and only if it obtains 𝑐

• Theorem [HKK17]: Assuming 𝐄𝐧𝐜, 𝐃𝐞𝐜 is IND-CPA (OW-CPA),
𝐄𝐧𝐜′, 𝐃𝐞𝐜′ is OW-PCA

88 Lattice-based Cryptography – Daniele Venturi

𝐄𝐧𝐜𝐆

𝑝𝑘

𝑚

𝐃𝐞𝐜𝑟 𝑐 𝑐 𝑚′

𝑠𝑘

Transformation 𝐔: From OW-PCA to IND-CCA

• Encapsulation outputs 𝑘 = 𝐇(𝑐, 𝑚) and 𝑐

• Decapsulation obtains 𝑚′ = 𝐃𝐞𝐜(𝑠𝑘, 𝑐) and outputs 𝑚′
• Here, 𝑚′ could be ⊥ (explicit rejection)

• Theorem [HKK17]: Assuming 𝐄𝐧𝐜′, 𝐃𝐞𝐜′ is OW-PCA,
𝐄𝐧𝐜𝐚𝐩𝐬, 𝐃𝐞𝐜𝐚𝐩𝐬 is IND-CCA

89 Lattice-based Cryptography – Daniele Venturi

𝐄𝐧𝐜′

𝑝𝑘

𝑚 ← ℳ

𝐃𝐞𝐜′
𝑐 𝑐 𝑚′

𝑠𝑘

𝐇
𝑐𝑘

90 Lattice-based Cryptography – Daniele Venturi

Advanced Cryptographic
Applications

Identity-Based Encryption

• Postulated by Shamir in 1984 [Sha84]
• Avoids the need of certificates

• Introduces the so-called key escrow problem

• First realization by Boneh and Franklin in 2001 [BF01]

91 Lattice-based Cryptography – Daniele Venturi

𝑥
Alice Bob𝐄𝐧𝐜 𝐃𝐞𝐜

𝑠𝑘𝐵𝑜𝑏

𝑥𝑐

Bob

𝑚𝑠𝑘
𝐊𝐆𝐞𝐧

Bob

𝑠𝑘𝐵𝑜𝑏

Selective Security of IBE

• Every selectively secure IBE is also fully secure with an
exponential loss in the parameters
• Also, general transformations are known

92 Lattice-based Cryptography – Daniele Venturi

𝑥0, 𝑥1

𝑐

guess b

𝐼𝐷∗

𝑚𝑝𝑘

𝐼𝐷

𝑠𝑘𝐼𝐷 = 𝐊𝐆𝐞𝐧(𝑚𝑠𝑘, 𝐼𝐷)
𝑚𝑝𝑘, 𝑚𝑠𝑘, random b

Eve Challenger

𝑐 ← 𝐄𝐧𝐜(𝐼𝐷∗, 𝑥𝑏)

Warm-up Construction [CHKP10]

• Public parameters: 𝑚𝑝𝑘 = (𝑨𝟎, 𝑨1
0, 𝑨1

1, 𝑨2
0, 𝑨2

1,𝒖)
• Assume, for simplicity, 𝐼𝐷 = 2

• Master secret key: Trapdoor for 𝑨0

• Secret key for identity 𝐼𝐷 = 01: Short vector 𝒔 s.t. 𝑭01 ∙ 𝒔 = 𝒖 mod 𝑞,
where 𝑭01 = [𝑨0|𝑨1

0|𝑨2
1]

• Note: A trapdoor for 𝑨0 implies a trapdoor for 𝑭01

• Encryption: Dual Regev encryption of 𝑥 w.r.t. matrix 𝑭01

• The ciphertext is 𝒄0
t = 𝒓t ∙ 𝑭01 + 𝒆t and 𝑐1 = 𝒓t ∙ 𝒖 + 𝑒′ + 𝑥 ∙ 𝑞/2

• Bob outputs 𝑐1 − 𝒄0
t ∙ 𝒔 ≈ 𝑥 ∙ 𝑞/2

93 Lattice-based Cryptography – Daniele Venturi

Simulation

• Assume the challenge identity is 𝐼𝐷∗ = 11
• The reduction can’t know the secret key for 𝐼𝐷∗

• Choose 𝑨0, 𝑨1
1, 𝑨2

1 uniformly at random, but sample 𝑨1
0, 𝑨2

0 with
the corresponding trapdoors

• The reduction can derive trapdoors for 𝑭00 = [𝑨0|𝑨1
0|𝑨2

0],
𝑭01 = [𝑨0|𝑨1

0|𝑨2
1], and 𝑭10 = [𝑨0|𝑨1

1|𝑨2
0] but not for

𝑭11 = [𝑨0|𝑨1
1|𝑨2

1]
• This allows the reduction to simulate key extraction queries while

embedding the LWE challenge in the simulation

94 Lattice-based Cryptography – Daniele Venturi

A More Efficient Construction [ABB10]

• Public parameters: 𝑚𝑝𝑘 = (𝑨𝟎, 𝑨1,𝑮,𝒖)

• Master secret key: Trapdoor for 𝑨0

• Secret key for identity 𝐼𝐷: Short vector 𝒔 s.t. 𝑭𝐼𝐷 ∙ 𝒔 = 𝒖 mod 𝑞,
where 𝑭𝐼𝐷 = [𝑨0|𝑨1 + 𝐼𝐷 ∙ 𝑮]

• As before, a trapdoor for 𝑨0 implies a trapdoor for 𝑭𝐼𝐷

• Encryption: Dual Regev encryption of 𝑥 w.r.t. matrix 𝑭𝐼𝐷

• The ciphertext is 𝒄0
t = 𝒓t ∙ 𝑭𝐼𝐷 + 𝒆t and 𝑐1 = 𝒓t ∙ 𝒖 + 𝑒′ + 𝑥 ∙ 𝑞/2

• Bob outputs 𝑐1 − 𝒄0
t ∙ 𝒔 = 𝒓t ∙ 𝒖 + 𝑒′ + 𝑥 ∙ 𝑞/2 − 𝒓t ∙ 𝑭𝐼𝐷 ∙ 𝒔 + 𝒆t ∙

𝒔 = 𝒓t∙ 𝒖 + 𝑒′ + 𝑥 ∙ 𝑞/2 − 𝒓t ∙ 𝒖 + 𝒆t ∙ 𝒔 ≈ 𝑥 ∙ 𝑞/2

95 Lattice-based Cryptography – Daniele Venturi

Simulation Revisited
• Assume the challenge identity is 𝐼𝐷∗

• The reduction can’t know the secret key for 𝐼𝐷∗

• The reduction does not know a trapdoor for 𝑨0, but it knows a
trapdoor for the gadget matrix 𝑮

• Let 𝑨1 = [𝑨0 ∙ 𝑹 − 𝐼𝐷∗ ∙ 𝑮], where 𝑹 is random and low-norm
• This is indistinguishable from the real 𝑨1

• Note that 𝑭𝐼𝐷 = [𝑨0|𝑨0 ∙ 𝑹 + (𝐼𝐷 − 𝐼𝐷∗) ∙ 𝑮]
• Using the technique of [MP12], we can derive a trapdoor for 𝑭𝐼𝐷

given a trapdoor for 𝑨0

• This allows to simulate key extraction queries for all 𝐼𝐷 ≠ 𝐼𝐷∗

• The LWE challenge can be embedded as before

96 Lattice-based Cryptography – Daniele Venturi

Inner-product Encryption [KSW08]

• Decryption reveals 𝑥 if and only if 𝒂, 𝒃 = 0
• Here, we can also be interested in attributes privacy

• Can be used to obtain predicate encryption for polynomial
evaluation, CNFs/DNFs of bounded degree, and fuzzy IBE

97 Lattice-based Cryptography – Daniele Venturi

𝑥
Alice Bob𝐄𝐧𝐜 𝐃𝐞𝐜

𝑠𝑘𝒃

𝑥𝑐

𝑚𝑠𝑘
𝐊𝐆𝐞𝐧

𝑠𝑘𝒃

𝒂 = (𝑎1, … , 𝑎𝑘)

𝒃

Generalizing to Inner Products [AFV11]

• Public parameters: 𝑚𝑝𝑘 = (𝑨, 𝑨1, … , 𝑨𝑘 , 𝑮, 𝒖)

• Master secret key: Trapdoor for 𝑨
• Secret key for 𝑏: Short vector 𝒔𝒃 s.t. 𝑭𝒃 ∙ 𝒔𝒃 = 𝒖 mod 𝑞, where 𝑭𝒃 =

[𝑨| σ𝑖 𝑏𝑖 ∙ 𝑨𝑖]

• Encryption: Dual Regev encryption of 𝑥 w.r.t. matrix 𝑨
• The ciphertext is 𝒄0

t = 𝒓t ∙ 𝑨 + 𝒆t, 𝑐′ = 𝒓t ∙ 𝒖 + 𝑒′ + 𝑥 ∙ 𝑞/2, and 𝒄𝑖
t =

𝒓t ∙ (𝑨𝑖+𝑎𝑖 ∙ 𝑮) + 𝒆𝑖
t (so it indeed hides 𝒂)

• Bob sets 𝒄𝒃 = σ𝑖 𝑏𝑖 ∙ 𝒄𝑖 = 𝒓t ∙ (σ𝑖 𝑏𝑖 ∙ 𝑨𝑖 + σ𝑖 𝑎𝑖 ∙ 𝑏𝑖 ∙ 𝑮) + σ𝑖 𝑏𝑖 ∙ 𝑒𝑖
which equals 𝒓t ∙ σ𝑖 𝑏𝑖 ∙ 𝑨𝑖 + σ𝑖 𝑏𝑖 ∙ 𝑒𝑖

• Hence, 𝒄0 𝒄𝒃 ≈ 𝒓t ∙ [𝑨| σ𝑖 𝑏𝑖 ∙ 𝑨𝑖] is a dual Regev ciphertext

• Bob outputs 𝑐′ − 𝒄0
t ∙ 𝒔𝒃 − 𝒄𝒃

t ∙ 𝒔𝒃 ≈ 𝑥 ∙ 𝑞/2

98 Lattice-based Cryptography – Daniele Venturi

Attribute-based Encryption [SW04]

• Decryption reveals 𝑥 if and only if 𝑓(𝒂) = 0
• Here, we are not interested in attributes privacy

• Plenty of applications for privacy-preserving data mining and in
cryptography for big data

99 Lattice-based Cryptography – Daniele Venturi

𝑥
Alice Bob𝐄𝐧𝐜 𝐃𝐞𝐜

𝑠𝑘𝑓

𝑥𝑐

𝑚𝑠𝑘
𝐊𝐆𝐞𝐧

𝑠𝑘𝑓

𝒂 = (𝑎1, … , 𝑎𝑘)

𝑓

Handling Multiplications [BGG+14]
• Let 𝒄1

t = 𝒓t ∙ (𝑨1+𝑎1 ∙ 𝑮) + 𝒆1
t and 𝒄2

t = 𝒓t ∙ (𝑨2+𝑎2 ∙ 𝑮) + 𝒆2
t

• Want: 𝒄12
t = 𝒓t ∙ (𝑨12+𝑎1 ∙ 𝑎2 ∙ 𝑮) + 𝒆12

t

• Compute (𝑨1+𝑎1 ∙ 𝑮) ∙ 𝑮−1(−𝑨2) = 𝑨1 ∙ 𝑮−1(−𝑨2) − 𝑎1 ∙ 𝑨2

• Compute (𝑨2+𝑎2 ∙ 𝑮) ∙ 𝑎1 = 𝑎1 ∙ 𝑨2 + 𝑎1 ∙ 𝑎2 ∙ 𝑮
• The difference is 𝑨12 + 𝑎1 ∙ 𝑎2 ∙ 𝑮

• So, we let 𝒄12
t = 𝒄1

t ∙ 𝑮−1(−𝑨2) + 𝒄2
t ∙ 𝑎1

• 𝑮−1(−𝑨2) and 𝑎1 are small and do not effect noise
• As usual, additionally let 𝒄0

t = 𝒓t ∙ 𝑨 + 𝒆t, 𝑐′ = 𝒓t ∙ 𝒖 + 𝑒′ + 𝑥 ∙ 𝑞/2
• If 𝑎1 ∙ 𝑎2 = 0, then [𝒄0|𝒄12] ≈ 𝒓t ∙ [𝑨|𝑨12]
• The secret key is a short vector 𝒔12 s.t. [𝑨|𝑨12] ∙ 𝒔12 = 𝒖 mod 𝑞
• Bob outputs 𝑐′ − 𝒄0

t ∙ 𝒔12 − 𝒄12
t ∙ 𝒔12 ≈ 𝑥 ∙ 𝑞/2

100 Lattice-based Cryptography – Daniele Venturi

Computing over Encrypted Data

• Can we have a (public-key) encryption scheme which allows to
run computations over encrypted data?

• Question dating back to the late 70s
• Ron Rivest and "privacy homomorphisms"

• Partial solutions known
• E.g., RSA and Elgamal enjoy limited forms of homomorphism

• First solution by Craig Gentry after 30 years
• The "Swiss Army knife of cryptography"

101 Lattice-based Cryptography – Daniele Venturi

Motivation: Outsourcing of Computation

• Email, web search, navigation, social networking, …

• What about private 𝑥?

102 Lattice-based Cryptography – Daniele Venturi

𝑥

𝑓(𝑥)
𝑓(∙)

Outsourcing of Computation - Privately

103 Lattice-based Cryptography – Daniele Venturi

𝐄𝐧𝐜(𝑝𝑘, 𝑥)

𝑦

𝐃𝐞𝐜(𝑠𝑘, 𝑦)
= 𝑓(𝑥)

Wish: Homomorphic evaluation function:
𝐄𝐯𝐚𝐥: 𝑝𝑘, 𝑓, 𝐄𝐧𝐜(𝑝𝑘, 𝑥) → 𝐄𝐧𝐜(𝑝𝑘, 𝑓(𝑥))

𝑓(∙)

Fully-Homomorphic Encryption (FHE)

104 Lattice-based Cryptography – Daniele Venturi

𝑐 = 𝐄𝐧𝐜 𝑝𝑘, 𝑥

𝑦 = 𝐄𝐯𝐚𝐥(𝑝𝑘, 𝑓, 𝑐)

Correctness:
𝐃𝐞𝐜 𝑠𝑘, 𝑦 = 𝑓(𝑥)

𝑝𝑘, 𝑠𝑘 𝑝𝑘
𝑓(∙)

Privacy:

𝐄𝐧𝐜 𝑝𝑘, 𝑥 ≈ 𝐄𝐧𝐜 𝑝𝑘, 0|𝑥|

FHE = Correctness ∀ efficient 𝑓 = Correctness for universal set

• NAND
• (+,×) over a ring

Levelled FHE: Bounded depth 𝑓

A Paradox (and its Resolution)

• But remember that encryption is randomized!

• Output of 𝐄𝐯𝐚𝐥 will look as a fresh and random ciphertext

105 Lattice-based Cryptography – Daniele Venturi

𝑐1 = 𝐄𝐧𝐜 𝑝𝑘, 𝑥1

𝑐2 = 𝐄𝐧𝐜 𝑝𝑘, 𝑥2

𝑐3 = 𝐄𝐧𝐜 𝑝𝑘, 𝑥3

𝐄𝐯𝐚𝐥 𝑝𝑘, 𝑓, (𝑐1, 𝑐2, 𝑐3)

𝐄𝐧𝐜 𝑝𝑘, 𝑥2

𝑓(𝑥1, 𝑥2, 𝑥3) = ቊ
𝑥2 if 𝑥1 = 0
𝑥3 if 𝑥1 = 1

AH! So 𝑥1 = 0

Syntax of FHE

• More formally: Π = (𝐊𝐆𝐞𝐧, 𝐄𝐧𝐜, 𝐃𝐞𝐜, 𝐄𝐯𝐚𝐥)
• 𝐊𝐆𝐞𝐧(1𝜆, 1𝜏): Takes the security parameter 𝜆 ∈ ℕ and another

parameter 𝜏 ∈ ℕ, and outputs (𝑝𝑘, 𝑠𝑘)

• 𝐄𝐧𝐜(𝑝𝑘, 𝑥): Takes a plaintext bit 𝑥, and outputs a ciphertext 𝑐

• 𝐃𝐞𝐜(𝑠𝑘, 𝑐): Takes a ciphertext 𝑐, and outputs a bit 𝑥

• 𝐄𝐯𝐚𝐥(𝑝𝑘, Γ, Ԧ𝑐): Takes Ԧ𝑐 = (𝑐1, … , 𝑐𝑡), and outputs another vector Ԧ𝑐′

• Correctness: Let 𝐶 = {𝐶𝜏}𝜏∈ℕ. Then Π is correct for 𝐶 if ∀𝜆, 𝜏 ∈
ℕ, ∀ 𝑝𝑘, 𝑠𝑘 ∈ 𝐊𝐆𝐞𝐧(1𝜆, 1𝜏):

106 Lattice-based Cryptography – Daniele Venturi

∀𝑥 ∈ 0,1 : ℙ[𝐃𝐞𝐜 𝑠𝑘, 𝐄𝐧𝐜(𝑝𝑘, 𝑥) = 𝑥]=1

∀Γ ∈ 𝐶𝜏, ∀ Ԧ𝑥 ∈ 0,1 𝑡: ℙ[𝐃𝐞𝐜(𝑠𝑘, 𝐄𝐯𝐚𝐥(𝑝𝑘, Γ, 𝐄𝐧𝐜(𝑝𝑘, Ԧ𝑥))) = Γ(Ԧ𝑥)]=1

Degrees of Homorphism

• Fully-Homomorphic Encryption: Correctness holds for 𝐶 such
that 𝐶1 already contains all Boolean circuits
• No need to consider the additional parameter 𝜏

• Somewhat/Levelled Homomorphic encryption: Correctness
holds for the family 𝐶 such that for all 𝜏 ∈ ℕ the set 𝐶𝜏 contains
all Boolean circuits with depth 𝜏

• Additively Homomorphic Encryption: Correctness holds for 𝐶
such that 𝐶1 contains all Boolean circuits with only XOR gates
• No need to consider the additional parameter 𝜏

107 Lattice-based Cryptography – Daniele Venturi

Trivial FHE?

• Let (𝐊𝐆𝐞𝐧, 𝐄𝐧𝐜, 𝐃𝐞𝐜) be any PKE scheme

• Define the following fully-homomorphic PKE
(𝐊𝐆𝐞𝐧, 𝐄𝐧𝐜, 𝐄𝐯𝐚𝐥′, 𝐃𝐞𝐜′):
• 𝐄𝐯𝐚𝐥′ 𝑝𝑘, Γ, 𝑐 = (Γ, 𝑐)

• 𝐃𝐞𝐜′ 𝑠𝑘, 𝑐 = Γ(𝐃𝐞𝐜 𝑠𝑘, 𝑐)

108 Lattice-based Cryptography – Daniele Venturi

Wish: Complexity of decryption much less
than running the circuit from scratch

Strong Homomorphism

• The simplest (and strongest) requirement is to ask that fresh
and evaluated ciphertexts look the same

• We say that Π is strongly homomorphic for 𝐶 = {𝐶𝜏}𝜏∈ℕ, if for
all 𝜏 ∈ ℕ, every Γ ∈ 𝐶𝜏 and Ԧ𝑥 ∈ 0,1 𝑡, it holds

109 Lattice-based Cryptography – Daniele Venturi

𝐄𝐯𝐚𝐥Π, Ԧ𝑥 𝜆 = 𝑝𝑘, Ԧ𝑐, Ԧ𝑐′ :
(𝑝𝑘, 𝑠𝑘) ←$ 𝐊𝐆𝐞𝐧(1𝜆, 1𝜏)

Ԧ𝑐 ←$ 𝐄𝐧𝐜(𝑝𝑘, Ԧ𝑥), Ԧ𝑐′ ←$ 𝐄𝐯𝐚𝐥(𝑝𝑘, Γ, Ԧ𝑐)

𝐅𝐫𝐞𝐬𝐡Π, Ԧ𝑥 𝜆 = 𝑝𝑘, Ԧ𝑐, Ԧ𝑐′ :
(𝑝𝑘, 𝑠𝑘) ←$ 𝐊𝐆𝐞𝐧(1𝜆, 1𝜏)

Ԧ𝑐 ←$ 𝐄𝐧𝐜(𝑝𝑘, Ԧ𝑥), Ԧ𝑐′ ←$ 𝐄𝐧𝐜(𝑝𝑘, Γ(Ԧ𝑥))

≈𝑠 ≈𝑐or

Strong Homomorphism

• Assume the class 𝐶 contains some 𝐶𝜏∗ which includes AND and
XOR (or NAND) gates

• Then we can evaluate every circuit by repeatedly evaluating
each gate on the outputs of preceedings gates
• By strong homomorphism, the output distribution when evaluating

any Γ is at most negl(𝜆) ∙ size(Γ) far from that of a fresh encryption
of the output

• Hence, we have obtained a strongly fully-homomorphic PKE!

110 Lattice-based Cryptography – Daniele Venturi

Compactness

• The following weaker property is often sufficient

• We say that Π is compact if there is a fixed polynomial bound
𝐵(∙) such that for all 𝜆, 𝜏 ∈ ℕ, any circuit Γ with 𝑡-bit inputs and
1-bit output, and all Ԧ𝑥 ∈ 0,1 𝑡:

• Note that 𝐵 does not depend on 𝜏
• An even weaker condition (dubbed weak compactness) is to have

𝐵 𝜆, 𝜏 , but still say 𝐵 𝜆, 𝜏 = poly 𝜆 ∙ 𝑜(log |𝐶𝜏|)

111 Lattice-based Cryptography – Daniele Venturi

ℙ 𝑐′ ≤ 𝐵 𝜆 :
(𝑝𝑘, 𝑠𝑘) ←$ 𝐊𝐆𝐞𝐧(1𝜆, 1𝜏)

Ԧ𝑐 ←$ 𝐄𝐧𝐜(𝑝𝑘, Ԧ𝑥), 𝑐′ ←$ 𝐄𝐯𝐚𝐥(𝑝𝑘, Γ, Ԧ𝑐)
= 1

Secret-Key versus Public-Key FHE

• There is also a secret-key variant of FHE
• Just set 𝑝𝑘 = 𝜀, and have both 𝐄𝐧𝐜, 𝐃𝐞𝐜 take only 𝑠𝑘 as input,

whereas 𝐄𝐯𝐚𝐥 takes only Γ, 𝑐

• Simple transform from SK-FHE to PK-FHE: Given Π =
(𝐊𝐆𝐞𝐧, 𝐄𝐧𝐜, 𝐃𝐞𝐜, 𝐄𝐯𝐚𝐥) let Π′ = 𝐊𝐆𝐞𝐧′, 𝐄𝐧𝐜′, 𝐃𝐞𝐜, 𝐄𝐯𝐚𝐥
• 𝐊𝐆𝐞𝐧′ runs 𝐊𝐆𝐞𝐧 and lets 𝑝𝑘 = (𝑐0, 𝑐1) where 𝑐0 ←$ 𝐄𝐧𝐜(𝑠𝑘, 0)

and 𝑐1 ←$ 𝐄𝐧𝐜(𝑠𝑘, 1)

• 𝐄𝐧𝐜′(𝑝𝑘, 𝑥) outputs 𝐄𝐯𝐚𝐥(Γid, 𝑐𝑥) where Γid represents the identity

• If Π is strongly homomorphic, the output of 𝐄𝐧𝐜′ is statistically close
to that of 𝐄𝐧𝐜(𝑠𝑘, 𝑥)

• Both strong homomorphism and semantic security are preserved!

112 Lattice-based Cryptography – Daniele Venturi

The Gentry-Sahai-Waters FHE Scheme

• In what follows we will present the FHE scheme due to:
• C. Gentry, A. Sahai, B. Waters: "Homomorphic Encryption from

Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,
Attribute-Based." CRYPTO 2013

• Based on the Learning with Errors (LWE) assumption

• Only achieves levelled homomorphism
• But can be bootstrapped to full homomorphism using a trick by

Gentry (under additional assumptions)

• Plaintext space will be ℤ𝑞 = [−𝑞/2, 𝑞/2), for a large prime 𝑞
• For simplicity let us write 𝑎 𝑞 for 𝑎 mod 𝑞

113 Lattice-based Cryptography – Daniele Venturi

Eigenvectors Method (Basic Idea)

• Let 𝐶1 and 𝐶2 be matrices for eigenvector Ԧ𝑠, and eigenvalues
𝑥1, 𝑥2 (i.e., Ԧ𝑠 × 𝐶𝑖 = 𝑥𝑖 ∙ Ԧ𝑠)
• 𝐶1 + 𝐶2 has eigenvalue 𝑥1 + 𝑥2 w.r.t. Ԧ𝑠

• 𝐶1 × 𝐶2 has eigenvalue 𝑥1 ∙ 𝑥2 w.r.t. Ԧ𝑠

• Idea: Let 𝐶 be the ciphertext, Ԧ𝑠 be the secret key and 𝑥 be the
plaintext (say over ℤ𝑞)
• Homomorphism for addition/multiplication

• But insecure: Easy to compute eigenvalues

114 Lattice-based Cryptography – Daniele Venturi

Approximate Eigenvectors (1/2)

• Approximate variant: Ԧ𝑠 × 𝐶 = 𝑥 ∙ Ԧ𝑠 + Ԧ𝑒 ≈ 𝑥 ∙ Ԧ𝑠
• Decryption works as long as Ԧ𝑒 ∞ ≪ 𝑞

• Goal: Define homomorphic operations

115 Lattice-based Cryptography – Daniele Venturi

Ԧ𝑠 × 𝐶1 = 𝑥1 ∙ Ԧ𝑠 + Ԧ𝑒1

Ԧ𝑒1 ∞ ≪ 𝑞

Ԧ𝑠 × 𝐶2 = 𝑥2 ∙ Ԧ𝑠 + Ԧ𝑒2

Ԧ𝑒2 ∞ ≪ 𝑞

𝐶add = 𝐶1 + 𝐶2:
Ԧ𝑠 × (𝐶1+𝐶2) = Ԧ𝑠 × 𝐶1 + Ԧ𝑠 × 𝐶2

= 𝑥1 ∙ Ԧ𝑠 + Ԧ𝑒1 + 𝑥2 ∙ Ԧ𝑠 + Ԧ𝑒2

= 𝑥1 + 𝑥2 ∙ Ԧ𝑠 + (Ԧ𝑒1 + Ԧ𝑒2)

Noise grows a
little!

Approximate Eigenvectors (2/2)

• Approximate variant: Ԧ𝑠 × 𝐶 = 𝑥 ∙ Ԧ𝑠 + Ԧ𝑒 ≈ 𝑥 ∙ Ԧ𝑠
• Decryption works as long as Ԧ𝑒 ∞ ≪ 𝑞

• Goal: Define homomorphic operations

116 Lattice-based Cryptography – Daniele Venturi

Ԧ𝑠 × 𝐶1 = 𝑥1 ∙ Ԧ𝑠 + Ԧ𝑒1

Ԧ𝑒1 ∞ ≪ 𝑞

Ԧ𝑠 × 𝐶2 = 𝑥2 ∙ Ԧ𝑠 + Ԧ𝑒2

Ԧ𝑒2 ∞ ≪ 𝑞

𝐶mult = 𝐶1 × 𝐶2:
Ԧ𝑠 × (𝐶1× 𝐶2) = (𝑥1∙ Ԧ𝑠 + Ԧ𝑒1) × 𝐶2

= 𝑥1 ∙ (𝑥2∙ Ԧ𝑠 + Ԧ𝑒2) + Ԧ𝑒1 × 𝐶2

= 𝑥1 ∙ 𝑥2 ∙ Ԧ𝑠 + (𝑥1∙ Ԧ𝑒2 + Ԧ𝑒1 × 𝐶2)

Noise grows!
Needs to be

small!

Shrinking Gadgets

• Write entries in 𝐶 using binary decomposition; e.g.

• Reverse operation:

117 Lattice-based Cryptography – Daniele Venturi

𝐶 =
3 5
1 4

mod 8
yields

bits 𝐶 =

0 1
1 0
1 1
0 1
0 0
1 0

mod 8

𝐶 = 𝐺 × 𝐺−1 𝐶 =
2𝑁−1 … 2 1 0 … 0 0

0 … 0 0 2𝑁−1 … 2 1 × bits 𝐶

𝑘 ∙ 𝑁 = 𝑘 log 𝑞
⇒ Ԧ𝑠 × 𝐶 = Ԧ𝑠 × 𝐺 × 𝐺−1(𝐶)

LWE – Rearranging Notation

118 Lattice-based Cryptography – Daniele Venturi

+

=

Ԧ𝑠

𝐴

η

𝑏

∈ ℤ𝑞
𝑛

∈ ℤ𝑞
𝑚Small noise ∈ ℤ𝑞

𝑚

η𝑖 ≤ 𝛼𝑞; 𝛼 ≪ 1

Ԧ𝑠

𝐴

−1

𝑏

= η

New secret Ԧ𝑠 ∈ ℤ𝑞
𝑛+1

New matrix

𝐴′ ∈ ℤ𝑞
𝑛+1 ×𝑚

LWE: 𝐴′ = (𝐴||𝑏) ≈𝑐 𝐔𝑞
(𝑛+1)×𝑚

𝑏 = Ԧ𝑠 × 𝐴 + η

Regev PKE – Pictorially

119 Lattice-based Cryptography – Daniele Venturi

Ԧ𝑠

= η

𝐴

𝐴 +Ԧ𝑟 Ԧ𝑦 = Ԧ𝑐𝑦

∈ ℤ2
𝑚

Ԧ𝑠
Ԧ𝑐𝑦

Ԧ𝑟 × η Ԧ𝑠 × Ԧ𝑦+=

small noisepublic key

encoding of bit 𝑥

E.g., Ԧ𝑦 = 𝑥 ∙ Τ𝑞 2 ∙ (0, … , 0, −1)

The GSW Scheme

120 Lattice-based Cryptography – Daniele Venturi

Ԧ𝑠

= η

𝐴

public key

𝐃𝐞𝐜 Ԧ𝑠, 𝐶 = Ԧ𝑠 × 𝐶 × 𝐺−1 (0, … , 0, − 𝑞/2)
= Ԧ𝑒 × 𝐺−1 ⋯ + 𝑥 ∙ Ԧ𝑠 × 𝐺 × 𝐺−1 (0, … , 0, − 𝑞/2)
= Ԧ𝑒 × 𝐺−1 ⋯ + 𝑞/2 ∙ 𝑥 = 𝑧

𝐄𝐧𝐜 𝐴, 𝑥; 𝑅 = [𝐴 × 𝑅 + 𝑥 ∙ 𝐺]𝑞

= 𝐶𝑥∙𝐺

Invariant: Ԧ𝑠 × 𝐶 = Ԧ𝑒 + 𝑥 ∙ Ԧ𝑠 × 𝐺

Output: 0 ⇔ 𝑧 < 𝑞/4

∈ ℤ2
𝑚×𝑁 = ℤ2

𝑚×𝑛∙ log𝑞

∈ ℤ𝑞
𝑛×𝑚

Ԧ𝑒 ∞ = η × 𝑅 ∞ ≤ (𝛼𝑞) ∙ 𝑚 = 𝑛 ∙ 𝑚

The GSW Scheme – Homomorphism

121 Lattice-based Cryptography – Daniele Venturi

Ԧ𝑠 × 𝐶1 × 𝐺−1 𝐶2 = (Ԧ𝑒1 + 𝑥1 ∙ Ԧ𝑠 × 𝐺) ∙ 𝐺−1(𝐶2)
= Ԧ𝑒1 × 𝐺−1 𝐶2 + 𝑥1 ∙ Ԧ𝑠 × 𝐺 × 𝐺−1 𝐶2

= Ԧ𝑒1 × 𝐺−1 𝐶2 + 𝑥1 ∙ Ԧ𝑠 × 𝐶2

= Ԧ𝑒1 × 𝐺−1 𝐶2 + 𝑥1 ∙ Ԧ𝑒2 + 𝑥2 ∙ Ԧ𝑠 × 𝐺
= Ԧ𝑒1 × 𝐺−1 𝐶2 + 𝑥1 ∙ Ԧ𝑒2 + 𝑥1𝑥2 ∙ Ԧ𝑠 × 𝐺
= Ԧ𝑒mult + 𝑥1𝑥2 ∙ Ԧ𝑠 × 𝐺

Invariant: Ԧ𝑠 × 𝐶 = Ԧ𝑒 + 𝑥 ∙ Ԧ𝑠 × 𝐺

𝐶mult = 𝐶1 × 𝐺−1(𝐶2)

Ԧ𝑒mult ∞ ≤ 𝑁 ∙ Ԧ𝑒1 ∞ + Ԧ𝑒2 ∞ ≤ (𝑁 + 1) ∙ max{ Ԧ𝑒1 , Ԧ𝑒2 }

The GSW Scheme – Correctness

122 Lattice-based Cryptography – Daniele Venturi

Ԧ𝑒in

Ԧ𝑒out

Ԧ𝑒in ∞ ≤ 𝑚 ∙ 𝑛 = 𝑚 ∙ 𝛼𝑞

Ԧ𝑒i+1 ∞ ≤ (𝑁 + 1) Ԧ𝑒i ∞

Ԧ𝑒out ∞ ≤ (𝑁 + 1)𝜏+1𝑚 ∙ 𝛼𝑞

Correctness:
𝑛 ∙ 𝑚 ∙ 𝑁 + 1 𝜏+1 < 𝑞/4

D
e

p
th

 𝜏

The GSW Scheme – Semantic Security

• Similar as in the proof of Regev PKE

• Using LWE we move to a mental experiment with 𝐴 ←$ ℤ𝑞
𝑛×𝑚

• Hence, by the leftover hash lemma, with 𝑚 = Θ(𝑛 log 𝑞), the
statistical distance between (𝐴, 𝐴 × Ԧ𝑟) and uniform is negligible
• By a hybrid argument over the columns of 𝑅, it follows that the

statistical distance between (𝐴, 𝐴 × 𝑅) and uniform is also negligible

• Thus, the ciphertext statistically hides the plaintext

123 Lattice-based Cryptography – Daniele Venturi

The GSW Scheme – Parameters

• Correctness requires 𝑛 ∙ 𝑚 ∙ 𝑁 + 1 𝜏+1 < 𝑞/4

• Security requires 𝑚 = Θ(𝑛 log 𝑞), e.g. 𝑚 ≥ 1 + 2𝑛(2 + log 𝑞)

• Hardness of LWE requires 𝑞 ≤ 2𝑛𝜖
for 𝜖 < 1

• Substituting we get 𝑞 > (2𝑛 log 𝑞)𝜏+3

• And thus 𝑛𝜖 > (𝜏 + 3)(log 𝑛 + log log 𝑞 + 1) which for large 𝜏, 𝑛
yields 𝑛𝜖 > 2𝜏 log 𝑛

• So we set 𝑛 = max(𝜆, 4𝜏/𝜖 log 𝜏1/𝜖), 𝑞 = 2𝑛𝜖
, 𝑚 = 𝑂(𝑛1+𝜖), and

𝛼 = Τ𝑛 𝑞 = 𝑛 ∙ 2−𝑛𝜖

• Hence, the size of ciphertexts is polynomial in 𝜆, 𝜏 thus yielding
a weakly-compact FHE

124 Lattice-based Cryptography – Daniele Venturi

Increasing the Homomorphic Capacity

• The only way to increase the homomorphic capacity of GSW is
to pick larger parameters

• This dependence can be broken using a trick by Gentry

• Main idea: Do a few operations, then switch keys

125 Lattice-based Cryptography – Daniele Venturi

𝑝𝑘1, 𝑠𝑘1

𝑝𝑘2, 𝑠𝑘2

𝑝𝑘3, 𝑠𝑘3

Switch keys

How to Switch Keys

126 Lattice-based Cryptography – Daniele Venturi

𝐃𝐞𝐜 𝑠𝑘,∙

𝑐

𝑥

𝐃𝐞𝐜 ∙, 𝑐

𝑠𝑘

𝑥

≡ 𝐷𝑐(∙)

Decryption circuit Dual view

𝐄𝐯𝐚𝐥𝑝𝑘′ 𝐷𝑐 , 𝑎𝑢𝑥 = 𝐄𝐯𝐚𝐥𝑝𝑘′ 𝐷𝑐 , 𝐄𝐧𝐜𝑝𝑘′ 𝑠𝑘

= 𝐄𝐧𝐜𝑝𝑘′ 𝐷𝑐(𝑠𝑘)

= 𝐄𝐧𝐜𝑝𝑘′ 𝑥

Bootstrappable Encryption

• Let 𝑊Π(𝜆, 𝜏) be the set of all fresh and evaluated ciphertexts
w.r.t. circuits class 𝐶𝜏

• For all possible keys and all possible inputs to the circuit

• Given 𝑐1, 𝑐2 ∈ 𝑊Π(𝜆, 𝜏), let 𝐷𝑐1,𝑐2
∗ 𝑠𝑘 be the augmented

decryption circuit, defined by

• We say that Π is bootstrappable if its homomorphic capacity
includes all the augmented decryption circuits
• I.e., ∃𝜏 s.t. ∀𝜆 ∈ ℕ, 𝑐1, 𝑐2 ∈ 𝑊Π(𝜆, 𝜏(𝜆)), we have 𝐷𝑐1,𝑐2

∗ ∈ 𝐶𝜏(𝜆)

127 Lattice-based Cryptography – Daniele Venturi

𝐷𝑐1,𝑐2
∗ 𝑠𝑘 = 𝑁𝐴𝑁𝐷(𝐷𝑐1

(𝑠𝑘), 𝐷𝑐2
(𝑠𝑘))

Bootstrapping Theorem

• One can show that the GSW scheme is bootstrappable

• Let Π be the bootstrappable scheme; construct Π′ as follows:
• 𝐊𝐆𝐞𝐧′(1𝜆, 1𝑑): For each 𝑖 ∈ [0, 𝑑], run (𝑝𝑘𝑖 , 𝑠𝑘𝑖) ←$ 𝐊𝐆𝐞𝐧(1𝜆, 1𝜏)

and Ԧ𝑐𝑖
∗ ←$ 𝐄𝐧𝐜(𝑝𝑘𝑖+1, 𝑠𝑘𝑖), and output 𝑠𝑘′ = 𝑠𝑘0, … , 𝑠𝑘𝑑 , 𝑝𝑘′ =

(𝑝𝑘0, Ԧ𝑐1
∗, … , Ԧ𝑐𝑑−1

∗ , 𝑝𝑘𝑑)
• 𝐄𝐧𝐜′(𝑝𝑘′, 𝑥): Return (0, 𝑐) where 𝑐 ←$ 𝐄𝐧𝐜(𝑝𝑘0, 𝑥)
• 𝐃𝐞𝐜′(𝑠𝑘′, 𝑐′): Return 𝐃𝐞𝐜(𝑠𝑘𝑖 , 𝑐) where 𝑐′ = (𝑖, 𝑐)

128 Lattice-based Cryptography – Daniele Venturi

Theorem. Any bootstrappable homomorphic encryption
scheme can be transformed into a compact somewhat

homomorphic encryption scheme

Bootstrapping Theorem
• 𝐄𝐯𝐚𝐥′(𝑝𝑘′, Γ, Ԧ𝑐): Go over the circuit in topological order from inputs to

outputs; for every gate at level 𝑖 with inputs (𝑖 − 1, 𝑐1) and (𝑖 − 1, 𝑐2),
run 𝑐′ ←$ 𝐄𝐯𝐚𝐥(𝑝𝑘𝑖 , 𝐷𝑐1,𝑐2

∗ , Ԧ𝑐𝑖−1
∗) and use 𝑖, 𝑐′ as the gate output

• To prove correctness, we proceed by induction
• The auxiliary ciphertexts Ԧ𝑐𝑖−1

∗ , and fresh ciphertexts are correct

• Assume that at level 𝑖 two ciphertexts 𝑐1, 𝑐2 ∈ 𝑊Π(𝜆, 𝜏) are correct

• Let 𝑐′ ←$ 𝐄𝐯𝐚𝐥(𝑝𝑘𝑖 , 𝐷𝑐1,𝑐2
∗ , Ԧ𝑐𝑖−1

∗); as Π is bootstrappable:

• Moreover, 𝑐′ ∈ 𝑊Π(𝜆, 𝜏)

129 Lattice-based Cryptography – Daniele Venturi

𝐃𝐞𝐜 𝑠𝑘𝑖 , 𝑐′ = 𝐷𝑐1,𝑐2
∗ 𝑠𝑘𝑖−1

= 𝑁𝐴𝑁𝐷(𝐷𝑐1
𝑠𝑘𝑖−1 , 𝐷𝑐2

𝑠𝑘𝑖−1) = 𝑁𝐴𝑁𝐷(𝑥1, 𝑥2)

Bootstrapping Theorem

• To prove semantic security, we use a hybrid argument

• In hybrid 𝐇𝑘(𝜆, 𝑏) we modify key generation by picking all
ciphertexts Ԧ𝑐𝑖

∗ such that 𝑖 ≥ 𝑘 as fresh encryptions of 0
• Note that 𝐇𝑑(𝜆, 𝑏) is just the semantic security game for Π′

• By semantic security of Π, 𝐇𝑘(𝜆, 𝑏) ≈𝑐 𝐇𝑘−1(𝜆, 𝑏) for each 𝑘 ∈ [0, 𝑑]
and 𝑏 ∈ {0,1}

• Finally, 𝐇0(𝜆, 𝑏) never uses 𝑠𝑘0, and thus by semantic security of Π no
PPT adversary can distinguish between 𝐇0(𝜆, 0) and 𝐇0(𝜆, 1) with
better than negligible probability

130 Lattice-based Cryptography – Daniele Venturi

Circular Security

• The above scheme is compact, but not fully homomorphic, as
we need a pair of keys for each level in the circuit

• A natural idea is to use a single pair (𝑝𝑘, 𝑠𝑘) and include in 𝑝𝑘′

a ciphertext Ԧ𝑐∗ ←$ 𝐄𝐧𝐜(𝑝𝑘, 𝑠𝑘)
• Correctness still holds for this variant, but the reduction to semantic

security breaks

• Workaround: Assume circular security
• I.e., 𝐄𝐧𝐜(𝑝𝑘, 0) ≈𝑐 𝐄𝐧𝐜(𝑝𝑘, 1) even given Ԧ𝑐∗ ←$ 𝐄𝐧𝐜(𝑝𝑘, 𝑠𝑘)

• GSW is conjectured to have this property, but no proof of this fact is
currently known

131 Lattice-based Cryptography – Daniele Venturi

Fully-Homomorphic Commitments

• Let 𝑨 ∈ ℤ𝑞
𝑛×𝑤 and 𝑪 = 𝑨 ∙ 𝑹 + 𝑥 ∙ 𝑮 for 𝑹 ∈ ℤ𝑤×𝑚 and 𝑥 ∈ ℤ𝑞

• Think of 𝑪 as a commitment to 𝑥 w.r.t. 𝑨 under randomness 𝑹

• Homomorphic operations:
𝑮 − 𝑪1 = 𝑨 −𝑹1 + 1 − 𝑥1 ∙ 𝑮
𝑪+ = 𝑪1 + 𝑪2 = 𝑨 ∙ 𝑹1 + 𝑹2 + 𝑥1 + 𝑥2 ∙ 𝑮
𝑪× = 𝑪1 ∙ 𝑮−1 𝑪2
= 𝑨 ∙ (𝑹1 ∙ 𝑮−1 𝑪2) + 𝑥1𝑮 ∙ 𝑮−1 𝑨 ∙ 𝑹2 + 𝑥2 ∙ 𝑮)
𝑨 ∙ 𝑹1 ∙ 𝑮−1 𝑪2 + 𝑥1 ∙ 𝑹2 + 𝑥1𝑥2𝑮

• Can be extended to vectors 𝒙 ∈ ℤ𝑞
𝐿

𝑪 = 𝑨 ∙ 𝑹 + 𝒙t⨂𝑮

132 Lattice-based Cryptography – Daniele Venturi

Proof Systems

• A proof system 𝜋 for membership in 𝐿 is an algorithm 𝒱 s.t.
• Completeness: For all 𝑥 ∈ 𝐿, then ∃𝜁 for which 𝒱 𝑥, 𝜁 = 1

• Soundness: For all 𝑥 ∉ 𝐿, then ∀𝜁 we have 𝒱 𝑥, 𝜁 = 0

• Note the fact that a proof exists might not be efficiently
verifiable
• I.e., we would like the verifier to run in polynomial time

133 Lattice-based Cryptography – Daniele Venturi

Proof 𝜁

𝐿 = {𝑥: ∃𝜁, 𝒱 𝑥, 𝜁 = 1}
Accept/Reject

NP Proof Systems

• An NP proof system 𝜋 for membership in 𝐿 is an algorithm 𝒱 s.t.
• Completeness: For all 𝑥 ∈ 𝐿, then ∃𝜁 for which 𝒱 𝑥, 𝜁 = 1

• Soundness: For all 𝑥 ∉ 𝐿, then ∀𝜁 we have 𝒱 𝑥, 𝜁 = 0

• Efficiency: For all 𝑥, we have that 𝒱 𝑥, 𝜁 halts after poly(|𝑥|) steps

• Note the running time is measured in terms of |𝑥|
• Necessarily, 𝜁 = poly(|𝑥|)

134 Lattice-based Cryptography – Daniele Venturi

Proof 𝜁

𝐿 = {𝑥: ∃𝜁, 𝒱 𝑥, 𝜁 = 1}
Accept/Reject

Examples

• Boolean satisfiability: 𝑆𝐴𝑇 = {𝜙 ∙ : ∃𝑤 ∈ {0,1}𝜆, 𝜙 𝑤 = 1}
• Complete: Every 𝐿 ∈ 𝑁𝑃 reduces to 𝑆𝐴𝑇

• Unstructured: Decidable in time 𝑒𝑂(𝜆)

• Linear equations: 𝐿𝐼𝑁 = {(𝐴, 𝑏): ∃𝑤, 𝐴 ∙ 𝑤 = 𝑏}
• Structured: Decidable in time 𝑂 𝜆2.373 = poly(𝜆)

• Quadratic residuosity: 𝑄𝑅𝑛 = {𝑥: ∃𝑤, 𝑥 ≡ 𝑤2mod 𝑛}
• Structured: 𝑄𝑅𝑛 is a subgroup of ℤ𝑛

∗

• Yet, when 𝑛 = 𝑝 ∙ 𝑞 with 𝑝 = 𝑞 = 𝜆 finding square roots is

equivalent to factoring the modulus (time 𝑒 ෨𝑂(𝜆1/3) on average)

135 Lattice-based Cryptography – Daniele Venturi

The Class P

• 𝐿 ∈ 𝑃 if there is a polynomial-time 𝒜 such that
𝐿 = {𝑥: 𝒜 𝑥 = 1}

• 𝐿 ∈ 𝐵𝑃𝑃: 𝒜 is PPT and errs with probability ≤ 1/3

• 𝐿 ∈ 𝑐𝑜𝑁𝑃 if and only if its complement ത𝐿 ∈ 𝑁𝑃

136 Lattice-based Cryptography – Daniele Venturi

𝑁𝑃-hard

𝑁𝑃

𝑃 =? 𝐵𝑃𝑃

𝑐𝑜𝑁𝑃

Proving Non-Membership

• How can we prove non-membership?
• Showing 𝜙 ∉ 𝑆𝐴𝑇 requires to check that ∀𝑖 ∈ 2𝜆 , 𝜙 𝑤𝑖 = 0

• Showing 𝑥 ∉ 𝑄𝑅𝑛 requires to check that ∀𝑖 ∈ 𝜑 𝑛 , 𝑥 ≢ 𝑤𝑖
2mod 𝑛

• So, a naive proof is exponentially large

• We can avoid this if we allow the proof to use
• Randomness (tolerate "error")

• Interaction (add a computationally unbounded "prover")

• S. Goldwasser, S. Micali, C. Rackoff. "The Knowledge Complexity of
Interactive Proof-Systems." STOC 1985

137 Lattice-based Cryptography – Daniele Venturi

Interactive Proof for 𝑄𝑅𝑛

• Completeness:
• We have 𝑥 ∉ 𝑄𝑅𝑛 ⇒ 𝑦2 ∈ 𝑄𝑅𝑛 ⋀ 𝑥𝑦2 ∉ 𝑄𝑅𝑛

• Soundness:
• We have 𝑥 ∈ 𝑄𝑅𝑛 ⇒ 𝑦2 ∈ 𝑄𝑅𝑛 ⋀ 𝑥𝑦2 ∈ 𝑄𝑅𝑛

• Hence, all even unbounded provers 𝒫∗ succeed w.p. 1/2

138 Lattice-based Cryptography – Daniele Venturi

𝑏′

𝑧
𝑏 ←$ 0,1
𝑦 ←$ ℤ𝑛

∗

𝑧 = ൝
𝑦2 if 𝑏 = 0

𝑥𝑦2 if 𝑏 = 1

𝑏′(𝑧) = ቊ
0 if 𝑧 ∈ 𝑄𝑅𝑛

1 if 𝑧 ∉ 𝑄𝑅𝑛

Check 𝑏′ = 𝑏

𝑥 ∉ 𝑄𝑅𝑛

Interactive Proof Systems

• An interactive proof system 𝜋 for 𝐿 consists of a PPT 𝒱 and an
unbounded 𝒫 such that
• Completeness: For all 𝑥 ∈ 𝐿, then ℙ[𝒫, 𝒱 𝑥 = 1] ≥ 2/3

• Soundness: For all 𝑥 ∉ 𝐿, for all 𝒫∗, then ℙ[𝒫∗, 𝒱 𝑥 = 1] ≤ 1/3

• Completeness and soundness can be bounded by any 𝑐, 𝑠: ℕ →
[0,1] as long as
• 𝑐 𝑥 ≥ Τ1 2 + 1/poly(|𝑥|) and 𝑠 𝑥 ≤ Τ1 2 − 1/poly(|𝑥|)

• So, poly(|𝑥|) repetitions yield 𝑠 𝑥 − 𝑐 𝑥 ≥ 1 − 2−poly(|𝑥|)

• The class NP has 𝑐 𝑥 = 1 and 𝑠 𝑥 = 0, whereas the class BPP
requires no interaction

139 Lattice-based Cryptography – Daniele Venturi

The Power of IP

• We have shown that 𝑄𝑅𝑛 ∈ 𝐼𝑃
• NP proof for 𝑄𝑅𝑛 not self-evident

• This suggests that maybe 𝑁𝑃 ⊆ 𝐼𝑃

• Turns out that 𝑆𝐴𝑇 ∈ 𝐼𝑃, and thus 𝑐𝑜𝑁𝑃 ⊆ 𝐼𝑃

• In fact, 𝑃#𝑃 ⊆ 𝐼𝑃 = 𝑃𝑆𝑃𝐴𝐶𝐸

140 Lattice-based Cryptography – Daniele Venturi

𝑁𝑃-hard

𝑁𝑃

𝑃 =? 𝐵𝑃𝑃

𝑐𝑜𝑁𝑃

𝑃#𝑃

What Does a Proof Reveal?

• Consider the following non-interactive proof for 𝑄𝑅𝑛

• Generating 𝜁 requires exponential time

• Verifying the proof requires 𝑂(𝜆2) time

• The verifier got something for free from seeing 𝜁
• Recall that finding 𝑤 is equivalent to factoring the modulus 𝑛

141 Lattice-based Cryptography – Daniele Venturi

𝜁 = 𝑤

𝑥 ∈ 𝑄𝑅𝑛 Check 𝑥 ≡ 𝑤2mod 𝑛

𝑥 ∈ 𝑄𝑅𝑛

How to Define Zero-Knowledge?

• Intuitively, we might want that
• The verifier does not learn 𝑤

• The verifier does not learn any symbol of 𝑤

• The verifier does not learn any information about 𝑤

• The verifier does not learn anything (beyond 𝑥 ∈ 𝐿)

• When does the verifier learn something?
• If at the end of the protocol he can compute something he could not

compute without running the protocol

• Zero-knowledge: Whatever can be computed while running the
protocol could have been computed without doing so

142 Lattice-based Cryptography – Daniele Venturi

Honest-Verifier Zero-Knowledge

• Hence, we must require that ∀𝑥 ∈ 𝐿 the verifier's view can be
efficiently simulated given just 𝑥 (but not 𝑤)
• In other words, the verifier learns whether 𝑥 ∈ 𝐿 but nothing more

• Whatever he could compute via the protocol he could have computed
by talking to himself (i.e., by running the simulator)

• An interactive proof system 𝜋 = (𝒫, 𝒱) for 𝐿 is perfect honest-
verifier zero-knowledge (HVZK) if ∃ PPT 𝒮 such that ∀𝑥 ∈ 𝐿:

• Sanity check: Previous proof is not HVZK

143 Lattice-based Cryptography – Daniele Venturi

𝒮(𝑥) ≡ 𝒫(𝑥, 𝑤), 𝒱(𝑥)

Perfect Zero-Knowledge

• An interactive proof system 𝜋 = (𝒫, 𝒱) for 𝐿 is perfect zero-
knowledge (PZK) if ∀ PPT 𝒱∗ ∃ PPT 𝒮 s.t. ∀𝑥 ∈ 𝐿, ∀𝑧 ∈ {0,1}∗:

• This is also known as black-box zero-knowledge

• Simulator runs in time poly(|𝑥|), but sometimes we will consider also
simulation in expected polynomial time

• Auxiliary input captures context
• Other protocol executions

• A-priori information (in particular about 𝑤)

144 Lattice-based Cryptography – Daniele Venturi

𝒮𝒱∗
(𝑥, 𝑧) ≡ 𝒫(𝑥, 𝑤), 𝒱∗(𝑥, 𝑧)

Can SAT be Proved in ZK?

• Why should we care?
• Because it is an NP-complete language

• If 𝑆𝐴𝑇 ∈ 𝑁𝑃, then every 𝐿 ∈ 𝑁𝑃 is provable in zero-knowledge

• Natural idea: Relax the definition of zero-knowledge
• Statistical zero-knowledge (SZK): Simulator's output statistically close

to the verifier's view (above theorem even holds for SZK)

• Computational zero-knowledge (CZK): Simulator's output
computationally close to the verifier's view (recall 𝜆 = |𝑥|)

145 Lattice-based Cryptography – Daniele Venturi

Theorem: If 𝑆𝐴𝑇 ∈ 𝑃𝑍𝐾, then the polynomial-time
hierarchy collapses to the second level

NP is in CZK

• One can show the following fundamental result:

• In fact, we will show that 𝐻𝐴𝑀 ⊆ 𝐶𝑍𝐾, where 𝐻𝐴𝑀 is the
language of all graphs with an Hamiltonian cycle
• This problem is 𝑁𝑃 complete

146 Lattice-based Cryptography – Daniele Venturi

Theorem: If OWFs exist, then 𝑁𝑃 ⊆ 𝐶𝑍𝐾.

Zero-Knowledge for NP from FHE

• Let 𝐿 ∈ 𝑁𝑃 with relation 𝑅
• This means 𝐿 = {𝑥: ∃𝑤 s. t. 𝑅 𝑥, 𝑤 = 1}

• Consider the circuit Γ𝑅,𝑥 𝑤 = 𝑅 𝑥, 𝑤

• The above protocol is not sound!
• Can you say why?

147 Lattice-based Cryptography – Daniele Venturi

𝑐′ ←$ 𝐄𝐯𝐚𝐥(𝑝𝑘, Γ𝑅,𝑥 , Ԧ𝑐)
𝑐′

𝑝𝑘, Ԧ𝑐

𝑥, 𝑤 𝑥 ∈ 𝐿𝑑

(𝑝𝑘, 𝑠𝑘) ←$ 𝐊𝐆𝐞𝐧(1𝜆)
Ԧ𝑐 ←$ 𝐄𝐧𝐜 𝑝𝑘, 𝑤
𝑑 = 𝐃𝐞𝐜 𝑠𝑘, 𝑐′

Adding Soundness

148 Lattice-based Cryptography – Daniele Venturi

• Now soundness follows by the fact that, for 𝑥 ∉ 𝐿, both
ciphertexts will be encryptions of zero
• Since those are indistinguishable, Alice can cheat with probability 1/2

• However, we need to ensure that 𝑝𝑘, Ԧ𝑐 are well formed
• Alice generates 𝑝𝑘1, 𝑝𝑘2 and Bob asks her to "open" one at random
• With the other key Alice encrypts 𝑤1, 𝑤2 s.t. 𝑤1 ⊕ 𝑤2 = 𝑤, and Bob

asks her to "open" one of the encryptions at random

𝑐′

𝑝𝑘, Ԧ𝑐

𝑥, 𝑤 𝑥 ∈ 𝐿

𝛽 ←$ 0,1

𝑐′ ←$ ൝
𝐄𝐯𝐚𝐥(𝑝𝑘, Γ𝑅,𝑥 , Ԧ𝑐) if 𝛽 = 1

𝐄𝐧𝐜 𝑝𝑘, 0 if 𝛽 = 0

Check 𝛽 = 𝑑

(𝑝𝑘, 𝑠𝑘) ←$ 𝐊𝐆𝐞𝐧(1𝜆)
Ԧ𝑐 ←$ 𝐄𝐧𝐜 𝑝𝑘, 𝑤
𝑑 = 𝐃𝐞𝐜 𝑠𝑘, 𝑐′

𝑑

Adding Zero-Knowledge

• The previous protocol is only honest-verifier zero-knowledge
• In fact, malicious Bob could send to Alice the first ciphertext in the

vector Ԧ𝑐, so that 𝑑 reveals the first bit of 𝑤

• This can be fixed using commitments
• Namely, Alice sends a commitment to 𝑑

• Hence, Bob must reveal his randomness in order to prove he run the
computation as needed

• Finally, Alice opens the commitment revealing 𝑑

149 Lattice-based Cryptography – Daniele Venturi

Non-Interactive Proofs

• So far, we have seen how to obtain zero-knowledge proofs
relying on randomness and interaction

• Can we remove interaction?
• I.e., Alice sends a single message 𝜁 to Bob to prove that 𝑥 ∈ 𝐿

• As we shall see, non-interactive zero-knowledge (NIZK) proofs
have exciting applications
• E.g., post a proof on a website, or on a blockchain

150 Secure Computation – Prof. Daniele Venturi

A Negative Result

• Consider the following PPT machine deciding 𝐿:

• Given 𝑥, run the simulator to obtain 𝜁 ←$ 𝒮(𝑥)

• Output the same as 𝒱(𝑥, 𝜁)

• Completeness: If 𝑥 ∈ 𝐿, the zero-knowledge property implies
that a simulated proof should be accepting

• Soundness: If 𝑥 ∉ 𝐿, the verifier 𝒱 rejects all proofs with high
probability (in particular a simulated proof)

151 Secure Computation – Prof. Daniele Venturi

Theorem: If 𝐿 admits a NIZK proof (𝒫, 𝒱), then 𝐿 ∈ 𝐵𝑃𝑃.

Common Reference String Model

• Main idea: Assume a trusted setup
• Typically a common reference string (CRS) accessible to all parties

• Sometimes just a uniformly random string

• Need a trusted party to generate the CRS in a reliable manner

• Formally, a non-interactive proof system is a tuple (𝒢, 𝒫, 𝒱)
• 𝒢(1𝜆): Outputs a CRS 𝜔

• 𝒫(𝜔, 𝑥, 𝑤): Outputs a proof 𝜁

• 𝒱(𝜔, 𝑥, 𝜁): Outputs a decision bit

152 Secure Computation – Prof. Daniele Venturi

Properties of NIZKs

• Completeness: ∀𝑥 ∈ 𝐿,

• Soundness: ∀𝑥 ∉ 𝐿, ∀𝒫∗,

• Zero-Knowledge: ∃ PPT 𝒮 = (𝒮0, 𝒮1) s.t. ∀𝑥 ∈ 𝐿,

153 Secure Computation – Prof. Daniele Venturi

ℙ 𝒱(𝜔, 𝑥, 𝜁) = 1: 𝜔 ←$ 𝒢 1𝜆 , 𝜁 ←$ 𝒫 𝜔, 𝑥, 𝑤 = 1

ℙ 𝒱(𝜔, 𝑥, 𝜁) = 1: 𝜔 ←$ 𝒢 1𝜆 , 𝜁 ←$ 𝒫∗ 𝜔, 𝑥 ∈ negl(𝜆)

𝜔, 𝒮1 𝜏, 𝑥 : (𝜔, 𝜏) ←$ 𝒮0 1𝜆 ≈𝑐 𝜔, 𝒫 𝜔, 𝑥, 𝑤 : 𝜔 ←$ 𝒢 1𝜆

𝜁

𝑥, 𝑤 𝑥 ∈ 𝐿

𝜔 ←$ 𝒢 1𝜆

But Do NIZKs Exist?
• In the random oracle model:

• A. Fiat, A. Shamir. "How to Prove Yourself: Practical Solutions to
Identification and Signatures Problems." CRYPTO 1986

• Assuming Factoring
• U. Feige, D. Lapidot, A. Shamir. "Multiple Non-Interactive Zero-

Knowledge Proofs based on a Single Random String." FOCS 1990

• In bilinear groups:
• J. Groth, A. Sahai. "Efficient Non-Interactive Proof Systems for Bilinear

Groups." SIAM Journal of Computing 41(5), 2012

• Assuming LWE
• C. Peikert, S. Shiehian. "Non-Interactive Zero-Knowledge for NP from

(Plain) LWE."

154 Secure Computation – Prof. Daniele Venturi

The Fiat-Shamir Transform

• Given public-coin 3-round protocol (𝒫, 𝒱) we define its FS-
collapse (𝒫FS, 𝒱FS) as depicted above
• 𝒫FS obtains 𝛼, 𝛾 from 𝒫, using 𝛽 = 𝐻(𝑥, 𝛼)

• 𝒱FS checks that 𝒱 accepts (𝛼, 𝛽, 𝛾), with 𝛽 = 𝐻(𝑥, 𝛼)

155 Secure Computation – Prof. Daniele Venturi

𝑥, 𝑤 𝑥 ∈ 𝐿

Random Oracle 𝐻

𝛼

𝑥, 𝑤 𝑥 ∈ 𝐿
𝛽 = 𝐻(𝑥, 𝛼)

𝛾

𝛽
FS Transform

𝜁 = (𝛼, 𝛾)

The Fiat-Shamir Transform

• Remark: Arguments versus proofs
• An argument has only computational (rather than statistical)

soundness

• Actually, the FS-collapse is even a NIZK-PoK in the ROM
• S. Faust, G. A. Marson, M. Kholweiss, D. Venturi. "On the Non-

Malleability of the Fiat-Shamir Transform." Indocrypt 2012

156 Secure Computation – Prof. Daniele Venturi

Theorem: Assuming (𝒫, 𝒱) is a 3-round public-coin
argument for 𝐿 with negligible soundness and HVZK, its FS-

collapse (𝒫FS, 𝒱FS) is a NIZK argument for 𝐿 in the ROM

Analysis in the ROM

• Suppose ∃𝑥 ∉ 𝐿 and some 𝒫FS
∗ producing an accepting proof

• Assume 𝒫FS
∗ makes 𝑝 ∈ poly(𝜆) queries to the RO, and makes 𝒱FS

accept with probability 𝜖(𝜆)

• We will construct 𝒫∗ breaking soundness w.p. poly(𝜖, 1/𝑝)

• We rely on the following useful fact:
• Let 𝐗, 𝐘 be correlated random variables such that ℙ[𝐸(𝐗, 𝐘)] ≥ 𝜖

where 𝐸 is some event

• Then for at least an 𝜖/2 fraction of 𝑥's, ℙ[𝐸(𝑥, 𝐘)] ≥ 𝜖/2

• Assume not, and call good an 𝑥 for which the statement holds

157 Secure Computation – Prof. Daniele Venturi

ℙ 𝐸 𝐗, 𝐘 = ℙ 𝐆𝐨𝐨𝐝 ∙ ℙ 𝐸 𝐗, 𝐘 |𝐆𝐨𝐨𝐝 + ℙ 𝐁𝐚𝐝 ∙ ℙ 𝐸 𝐗, 𝐘 |𝐁𝐚𝐝 < Τ𝜖 2 ∙ 1 + 1 ∙ Τ𝜖 2

Analysis in the ROM
• Let (𝛼, 𝛾) be the proof output by 𝒫FS

∗

• Denote by (𝑞1, … , 𝑞𝑝) the RO queries asked by 𝒫FS
∗

• Each query is a pair (𝑥𝑖 , 𝛼𝑖)
• Wlog. assume all queries are distinct and ∃𝑖∗ ∈ 𝑝 s. t. 𝑞𝑖∗ = (𝛼, 𝑥)

• Proof: ∃𝑖∗ s.t. 𝒫FS
∗ wins w.p. Τ𝜖 𝑝 conditioned on 𝐪𝑖∗ = 𝛼, 𝑥

• As otherwise 𝒫FS
∗ does not have advantage ≥ 𝜖

• The statement then follows directly by the useful fact

158 Secure Computation – Prof. Daniele Venturi

Forking Lemma. For an Τ𝜖 2𝑝 fraction of
(𝑞1, … , 𝑞𝑖∗) it holds that 𝒫FS

∗ wins w.p. Τ𝜖 2𝑝
conditioned on 𝐪𝑖∗ = 𝛼, 𝑥 and 𝐪𝑖 = 𝑞𝑖 (∀𝑖 ≤ 𝑖∗)

Analysis in the ROM

• The prover 𝒫∗ acts as follows
• Run 𝒫FS

∗ and answer all RO queries 𝑞𝑖 with 𝑖 < 𝑖∗ at random

• Upon input the query 𝑞𝑖∗ with 𝛼 ∈ 𝑞𝑖∗ , forward 𝛼 to 𝒱 and receive 𝛽

• Use 𝛽 as the answer to RO query 𝑞𝑖∗

• Upon (𝛼′, 𝛾), hope that 𝛼′ = 𝛼

159 Secure Computation – Prof. Daniele Venturi

𝛼

𝑥 ∉ 𝐿𝛾

𝛽

𝑥 ∉ 𝐿

𝑞𝑖

𝛽𝑖

(𝛼′, 𝛾)

𝛽≠𝑖∗ ←$ {0,1}𝑡

𝛽≠𝑖∗ = 𝛽

𝑥 ∉ 𝐿

𝒫FS
∗

𝒫∗

Analysis in the ROM

• By the forking lemma, we get that w.p. Τ𝜖 2𝑝 over the choice of
(𝐪1, … , 𝐪𝑖∗), 𝒫FS

∗ wins w.p. Τ𝜖 2𝑝 conditioned on 𝛼′ = 𝛼

• Hence:

• Since this is non-negligible, then soundness follows

• It remains to prove zero-knowledge
• But we did not yet defined what zero-knowledge in the ROM means

• Typically, the simulator is allowed to program the random oracle

160 Secure Computation – Prof. Daniele Venturi

ℙ[𝒫∗ wins] ≥
𝜖

2𝑝

2

Analysis in the ROM

• Let 𝒮 be the HVZK simulator for the public-coin protocol

• The NIZK simulator 𝒮FS:
• Answer RO query 𝑞𝑖 = (𝛼𝑖 , 𝑥𝑖) with random 𝛽𝑖
• Upon input 𝑥 ∈ 𝐿, run (𝛼, 𝛽, 𝛾) ←$ 𝒮(𝑥) and program 𝐻 𝑥, 𝛼 = 𝛽
• Abort if (𝑥, 𝛼) was previously queried to the RO

• Non-triviality: Need that 𝛼 is unpredictable!

161 Secure Computation – Prof. Daniele Venturi

𝑥 ∈ 𝐿

(𝛼, 𝛾)

𝑥 ∈ 𝐿

𝑞𝑖

𝛽𝑖
𝛽𝑖 ←$ {0,1}𝑡

𝛼, 𝛽, 𝛾 ←$ 𝒮 𝑥
𝐻 𝑥, 𝛼 = 𝛽

Abort if cannot
program the RO

Can make RO
queries!

On Adaptive Soundness
• Our definition of soundness for NIZKs is non-adaptive

• In particular, the choice of 𝑥 ∉ 𝐿 cannot depend on the CRS
• One can show that the Fiat-Shamir transform actually achieves

adaptive soundness

• Note that the FS-collapse defines 𝛽 = 𝐻(𝑥, 𝛼), i.e. we hash both
the statement 𝑥 and the commitment 𝛼
• Sometimes, a variant where 𝛽 = 𝐻(𝛼) is also used
• However, this might not be adaptively sound leading to actual attacks

in some applications
• D. Bernhard, O. Pereira, B. Warinschi. "How not to Prove Yourself:

Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios."
ASIACRYPT 2012

162 Secure Computation – Prof. Daniele Venturi

Generalization to Multi-Round Protocols
• The FS transform can be generalized to constant-round public-

coin arguments
• The prover 𝒫FS hashes the current view (𝑥, 𝛼1, … , 𝛼𝑖−1) in order to

obtain the 𝑖-th message 𝛽𝑖 from the verifier 𝒱

• A non-interactive proof now consists of 𝜁 = (𝛼1, … , 𝛼𝑛)

• This is also known to be tight
• There exists a non-constant-round public-coin argument for which the

FS-collapse is not sound (even in the ROM)
• Consider any constant-round public-coin argument with constant

soundness, and amplify soundness by sequential repetition
• This yields negligible soundness in non-constant rounds
• But the reduction does not yield negligible soundness anymore

163 Secure Computation – Prof. Daniele Venturi

Fiat-Shamir without Random Oracles?

• Natural question: Can we instantiate the random oracle using an
explicit hash family?
• Understand which properties of a random oracle are necessary for

proving security of the Fiat-Shamir transform in the CRS model

• Unfortunately, this is not possible for all 3-round public-coin
proofs/arguments
• S. Goldwasser, Y. T. Kalai. "On the (in)security of the Fiat-Shamir

paradigm." FOCS 2003

• N. Bitansky, D. Dachman-Soled, S. Garg, A. Jain, Y. T. Kalai, A. Lopez-Alt,
D. Wichs. "Why Fiat-Shamir for Proofs Lacks a Proof." TCC 2013

• Still possible for some specific class of protocols

164 Lattice-based Cryptography – Daniele Venturi

Correlation Intractability

• Let ℋ = {ℎ: {0,1}𝑠→ {0,1}𝑡} be a family of hash functions
• Consider any relation 𝑅 ⊆ {0,1}𝑠× {0,1}𝑡

• We say that ℋ is 𝑅-correlation-intractable if for all PPT 𝒜:

• A relation 𝑅 is said to be 𝜌-sparse, if ∀𝑥 ∈ {0,1}𝑠:

• Moreover, the relation 𝑅 is sparse if 𝜌(𝜆) ∈ negl(𝜆)

165 Lattice-based Cryptography – Daniele Venturi

ℙ[(𝑥, ℎ(𝑥)) ∈ 𝑅: ℎ ←$ ℋ; 𝑥 ←$ 𝒜(ℎ)] ∈ negl(𝜆)

ℙ[(𝑥, 𝑦) ∈ 𝑅: 𝑦 ←$ {0,1}𝑡] ≤ 𝜌(𝜆)

Fiat-Shamir via Correlation Intractability

• Consider the relation:

• It is not hard to show that statistical soundness (with negligible
soundness error) implies that 𝑅𝜋 is sparse

• But a cheating 𝒫FS
∗ finds 𝛼∗ s.t. ((𝑥, 𝛼∗), ℎ(𝑥, 𝛼∗)) ∈ 𝑅𝐿,𝜋, violating CI

166 Lattice-based Cryptography – Daniele Venturi

Theorem: Assuming 𝜋 = (𝒫, 𝒱) is a 3-round public-coin
proof for 𝐿 with soundness and HVZK, its FS-collapse

(𝒫FS, 𝒱FS) using a CI hash family ℋ is a NIZK argument for 𝐿

𝑅𝐿,𝜋 = { (𝛼, 𝑥), 𝛽 : ∃𝛾 s. t. 𝑥 ∉ 𝐿 ∧ 𝒱 𝑥, 𝛼, 𝛽, 𝛾 = 1}

Fiat-Shamir via Correlation Intractability

• Zero-knowledge additionally requires that ℋ is programmable
• Call ℋ 1-universal if for all 𝑥 ∈ {0,1}𝑠, 𝑦 ∈ {0,1}𝑡, the probability over

the choice of ℎ ∈ ℋ that ℎ 𝑥 = 𝑦 equals 2−𝑡

• ℋ is programmable if it is 1-universal and further there exists an
efficient algorithm 𝐒𝐚𝐦𝐩(1𝜆, 𝑥, 𝑦) that samples from the conditional
distribution ℎ ←$ ℋ such that ℎ 𝑥 = 𝑦

• We can assume programmability wlog.
• Sample ℎ ←$ ℋ and a random string 𝑢 ←$ {0,1}𝑡

• Output ℎ(𝑥) ⊕ 𝑢

• Algorithm 𝐒𝐚𝐦𝐩(1𝜆, 𝑥, 𝑦) picks ℎ ←$ ℋ and outputs (ℎ, ℎ(𝑥) ⊕ 𝑦)

167 Lattice-based Cryptography – Daniele Venturi

Fiat-Shamir via Correlation Intractability
• Assuming obfuscation:

• Y. T. Kalai, G. N. Rothblum, R. D. Rothblum. "From Obfuscation to the
security of Fiat-Shamir for Proofs." CRYPTO 17

• Assuming optimal KDM-secure encryption:
• R. Canetti, Y. Chen, L. Reyzin, R. D. Rothblum. "Fiat-Shamir and CI from

Strong KDM-Secure Encryption" EUROCRYPT 18

• Assuming circularly secure FHE:
• R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum, R. D.

Rothblum, D. Wichs. "Fiat-Shamir: From Theory to Practice." STOC 19

• Assuming (plain) LWE:
• C.Peikert, S. Shiehian. "Noninteractive Zero Knowledge from (Plain)

Learning With Errors." CRYPTO 19

168 Lattice-based Cryptography – Daniele Venturi

Questions?
Cryptography Course

Prof. Daniele Venturi
Dipartimento di Informatica

Academic Year 2024/2025

References
• [Ajt96] Miklós Ajtai: Generating hard instances of lattice problems (extended abstract). STOC 1996

• [ACPS09] Benny Applebaum, David Cash, Chris Peikert, Amit Sahai: Fast cryptographic primitives and circular-
secure encryption based on hard learning problems. CRYPTO 2009

• [GGM84] Oded Goldreich, Shafi Goldwasser, Silvio Micali: How to construct random functions (extended
abstract). FOCS 1984

• [Mic01] Daniele Micciancio: Improving lattice based cryptosystems using the Hermite normal form. CaLC 2001

• [NR95] Moni Naor, Omer Reingold: Synthesizers and their application to the parallel construction of psuedo-
random functions. FOCS 1995

• [NR97] Moni Naor, Omer Reingold: Number-theoretic constructions of efficient pseudo-random
functions. FOCS 1997

• [Pei10] Chris Peikert: An efficient and parallel Gaussian sampler for lattices. CRYPTO 2010

• [Reg05] Oded Regev: On lattices, learning with errors, random linear codes, and cryptography. STOC 2005

• [Sho94] Peter W. Shor: Algorithms for quantum computation: discrete logarithms and factoring. FOCS 1994

• [NRR00] Moni Naor, Omer Reingold, Alon Rosen: Pseudo-random functions and factoring (extended
abstract). STOC 2000

• [BPR12] Abhishek Banerjee, Chris Peikert, Alon Rosen: Pseudorandom functions and lattices. EUROCRYPT 2012

170 Lattice-based Cryptography – Daniele Venturi

References
• [AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, Daniel Wichs: Learning with rounding, revisited - New

reduction, properties and applications. CRYPTO 2013

• [Bab86] László Babai: On Lovász' lattice reduction and the nearest lattice point problem. Comb. 6(1) 1986

• [Ajt99] Miklós Ajtai: Generating hard instances of the short basis problem. ICALP 1999

• [GPV08] Craig Gentry, Chris Peikert, Vinod Vaikuntanathan: Trapdoors for hard lattices and new cryptographic
constructions. STOC 2008

• [P10] Chris Peikert: An Efficient and Parallel Gaussian Sampler for Lattices. CRYPTO 2010

• [AP09] Joël Alwen, Chris Peikert: Generating shorter bases for hard random lattices. STACS 2009

• [MP12] Daniele Micciancio, Chris Peikert: Trapdoors for lattices: simpler, tighter, faster, smaller. EUROCRYPT 2012

• [Kle01] Philip N. Klein: Finding the closest lattice vector when it's unusually close. SODA 2000

• [CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, Chris Peikert: Bonsai trees, or how to delegate a lattice
basis. EUROCRYPT 2010

171 Lattice-based Cryptography – Daniele Venturi

	Slide 1: Lattice-based Cryptography Cryptography Course
	Slide 2: The Quantum Threat
	Slide 3: What’s the Rush?
	Slide 4
	Slide 5: What is a Lattice?
	Slide 6: History
	Slide 7: Equivalent Bases
	Slide 8: Equivalent Bases
	Slide 9: The Fundamental Region
	Slide 10: Determinant
	Slide 11: Successive Minima
	Slide 12: Minkowski’s Theorem
	Slide 13: Minkowski’s Theorem
	Slide 14: Hard Problems
	Slide 15: General Hardness Results
	Slide 16: Small Integer Solution Problem
	Slide 17: SIS as a Lattice Problem
	Slide 18: Learning with Errors [Reg05]
	Slide 19: Decisional LWE
	Slide 20: LWE as a Lattice Problem
	Slide 21: Hardness of LWE
	Slide 22: Simple Properties
	Slide 23: Search/Decision Equivalence
	Slide 24: LWE with Short Secrets
	Slide 25: LWE vs SIS
	Slide 26: Efficiency of LWE/SIS
	Slide 27: Wishful Thinking…
	Slide 28: LWE over Rings/Modules
	Slide 29: Hardness of Ring/Module-LWE
	Slide 30: Why Lattice-based Cryptography?
	Slide 31
	Slide 32: One-Way Functions
	Slide 33: Collision-resistant Hash Functions
	Slide 34: Commitments
	Slide 35: Commitments
	Slide 36: Leftover Hash Lemma
	Slide 37: Pseudorandom Functions [GGM84]
	Slide 38: Constructing PRFs
	Slide 39: Synthetisers [NR95]
	Slide 40: PRFs from Synthetisers [NR95]
	Slide 41: Synthetisers from LWE?
	Slide 42: Learning with Rounding [BPR12]
	Slide 43: Synthetiser-based PRF from LWR
	Slide 44: Direct Construction
	Slide 45: Proof Sketch
	Slide 46
	Slide 47
	Slide 48: Digital Signatures
	Slide 49: Lattice Trapdoors
	Slide 50: A Different Kind of Trapdoor [MP12]
	Slide 51: Step 1: The Gadget Matrix
	Slide 52: Step 1: The Gadget Matrix G
	Slide 53: Step 2: Randomize G
	Slide 54: A New Trapdoor Notion
	Slide 55: Step 3: Reduce f A. 1 to f G 1
	Slide 56: Step 3: Perturbation Method [P10]
	Slide 57: Falcon: Digital Signatures from SIS
	Slide 58
	Slide 59: Canonical Identification Schemes
	Slide 60: The Fiat-Shamir Transform
	Slide 61: The Fiat-Shamir Transform
	Slide 62: Sufficient Criteria for Passive Security
	Slide 63: Proofs of Knowledge
	Slide 64: Honest-Verifier Zero-Knowledge
	Slide 65: Canonical ID Scheme from Discrete Log
	Slide 66: Let’s Try the Same Idea using Lattices
	Slide 67: Many Problems…
	Slide 68: Modified Protocol (Take 1)
	Slide 69: Insecurity of the Protocol
	Slide 70: Possible Fix?
	Slide 71: Possible Fix?
	Slide 72: In General…
	Slide 73: Modified Protocol (Take 2)
	Slide 74: Modified Protocol (Take 2)
	Slide 75: Modified Protocol (Take 3)
	Slide 76: In Practice
	Slide 77
	Slide 78: Public-Key Encryption
	Slide 79: Chosen-Plaintext Attack (CPA) Security
	Slide 80: Regev PKE [Reg05]
	Slide 81: Dual Regev [GPV08]
	Slide 82: Primal versus Dual
	Slide 83: Most Efficient [LP11]
	Slide 84: Chosen-Ciphertext Attack (CCA) Security
	Slide 85: Fujisaki-Okamoto Transform
	Slide 86: One-Wayness of PKE
	Slide 87: Modularization of the FO Transform
	Slide 88: Transformation T: From IND-CPA to OW-PCA
	Slide 89: Transformation U: From OW-PCA to IND-CCA
	Slide 90
	Slide 91: Identity-Based Encryption
	Slide 92: Selective Security of IBE
	Slide 93: Warm-up Construction [CHKP10]
	Slide 94: Simulation
	Slide 95: A More Efficient Construction [ABB10]
	Slide 96: Simulation Revisited
	Slide 97: Inner-product Encryption [KSW08]
	Slide 98: Generalizing to Inner Products [AFV11]
	Slide 99: Attribute-based Encryption [SW04]
	Slide 100: Handling Multiplications [BGG+14]
	Slide 101: Computing over Encrypted Data
	Slide 102: Motivation: Outsourcing of Computation
	Slide 103: Outsourcing of Computation - Privately
	Slide 104: Fully-Homomorphic Encryption (FHE)
	Slide 105: A Paradox (and its Resolution)
	Slide 106: Syntax of FHE
	Slide 107: Degrees of Homorphism
	Slide 108: Trivial FHE?
	Slide 109: Strong Homomorphism
	Slide 110: Strong Homomorphism
	Slide 111: Compactness
	Slide 112: Secret-Key versus Public-Key FHE
	Slide 113: The Gentry-Sahai-Waters FHE Scheme
	Slide 114: Eigenvectors Method (Basic Idea)
	Slide 115: Approximate Eigenvectors (1/2)
	Slide 116: Approximate Eigenvectors (2/2)
	Slide 117: Shrinking Gadgets
	Slide 118: LWE – Rearranging Notation
	Slide 119: Regev PKE – Pictorially
	Slide 120: The GSW Scheme
	Slide 121: The GSW Scheme – Homomorphism
	Slide 122: The GSW Scheme – Correctness
	Slide 123: The GSW Scheme – Semantic Security
	Slide 124: The GSW Scheme – Parameters
	Slide 125: Increasing the Homomorphic Capacity
	Slide 126: How to Switch Keys
	Slide 127: Bootstrappable Encryption
	Slide 128: Bootstrapping Theorem
	Slide 129: Bootstrapping Theorem
	Slide 130: Bootstrapping Theorem
	Slide 131: Circular Security
	Slide 132: Fully-Homomorphic Commitments
	Slide 133: Proof Systems
	Slide 134: NP Proof Systems
	Slide 135: Examples
	Slide 136: The Class P
	Slide 137: Proving Non-Membership
	Slide 138: Interactive Proof for , Q R , , n
	Slide 139: Interactive Proof Systems
	Slide 140: The Power of IP
	Slide 141: What Does a Proof Reveal?
	Slide 142: How to Define Zero-Knowledge?
	Slide 143: Honest-Verifier Zero-Knowledge
	Slide 144: Perfect Zero-Knowledge
	Slide 145: Can SAT be Proved in ZK?
	Slide 146: NP is in CZK
	Slide 147: Zero-Knowledge for NP from FHE
	Slide 148: Adding Soundness
	Slide 149: Adding Zero-Knowledge
	Slide 150: Non-Interactive Proofs
	Slide 151: A Negative Result
	Slide 152: Common Reference String Model
	Slide 153: Properties of NIZKs
	Slide 154: But Do NIZKs Exist?
	Slide 155: The Fiat-Shamir Transform
	Slide 156: The Fiat-Shamir Transform
	Slide 157: Analysis in the ROM
	Slide 158: Analysis in the ROM
	Slide 159: Analysis in the ROM
	Slide 160: Analysis in the ROM
	Slide 161: Analysis in the ROM
	Slide 162: On Adaptive Soundness
	Slide 163: Generalization to Multi-Round Protocols
	Slide 164: Fiat-Shamir without Random Oracles?
	Slide 165: Correlation Intractability
	Slide 166: Fiat-Shamir via Correlation Intractability
	Slide 167: Fiat-Shamir via Correlation Intractability
	Slide 168: Fiat-Shamir via Correlation Intractability
	Slide 169: Questions? Cryptography Course
	Slide 170: References
	Slide 171: References

