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The Quantum Threat

* An algorithm by Shor [Sho94] solves the factoring and discrete
logarithm problems in polynomial-time on a quantum machine
* The algorithm requires an ideal quantum Turing machine

* Factoring a 1024-bit integer requires 2050 logical qubits and a
guantum circuit with billions of quantum gates

* Despite recent progress on quantum computation, current
implementations can only factor tiny numbers (e.g., 15 and 21)

* Nevertheless, the NIST started in 2017 a process to solicit,
evaluate, and standardize quantum-resistant cryptography
* The selected algorithms were announced in 2022
* Most of these algorithms are based on lattices
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What’s the Rush?

* Big qguantum computers won’t be available for many years
* If ever...
 Can’t we just wait?

* Better safe than sorry

» Harvesting attacks: Store today’s keys/ciphertexts to break later
* Rewrite history: Forge signatures for old keys
* Deploying new cryptography at scale requires 10+ years
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Lattices
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What is a Lattice?

* Simply, a set of points in a high-dimensional space
* Arranged periodically

* Formally, take n linearly independent vectors (b, ..., b,)) in R"
and consider all integer combinations

L= {albl + -+ anbn: a, ..., n (S Z}

> ¢ e+ Wecall (b, ..., by) a basis
° o * The same lattice may have

o . different equivalent basis

o o * Even if base vectors are long, there
are short vectors in the lattice
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History

* Geometric objects with rich mathematical structure

* Considerable mathematical interest starting from Gauss (1801),
Hermite (1850), and Minkowski (1896)

* Recently, many interesting applications (cryptanalysis, factoring
rational polynomials, finding integer relations, ...)
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Equivalent Bases

* Sometimes, we write L(B) where B is the matrix whose
columns are (b4, ..., b,)
* One can also define a lattice as a discrete additive subgroup of R

* Equivalent bases:

@ @ ) (<) e [ -

_OonaHEey | 1.1) ) * Permute vectors (i.e., b; < bj)
\Z/Z . / . * Negate vectors (i.e., b; < (—b;))
(0,0) (0.1) 0,0)  (20) e Add integer multiple of another

(<) () () ] e @ (<] [

vector (i.e., b; <« b; + k- b;, k € 7Z)

* Theorem: Two bases B4, B, are equivalentiff By =B, - U
e U unimodular (i.e., integer matrix with det(U) = +1)
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Equivalent Bases
° et Bl — Bz . U

e If U is unimodular,soisU *and B, =B, -U~!

* Hence, L(B,) € L(B,) and L(B,) € L(B,) or L(B{) = L(B5)
*letBy =B, -Wand B, = B, -V for integer matrices V, W

* Hence, By =B, -V-WorB,-(I—-V -W)=0

* Since the vectors in B are linearly independent, I — V- W =0

 Thus, V-W =Tanddet(V) - det(W) = det(V - W) = 1

 Since V, W are integer matrices det(V), det(W) € Z and det(V) =
det(W) = +1
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The Fundamental Region

* The fundamental region of a lattice corresponds to a periodic
tiling of R"™ by copies of some body

* For instance, [0,1) is a fundamental region of the integer lattice Z, as
every x € R is in the unique translate | x| + [0,1)

° o ¢ -+ _» < Alattice base yields a fundamental region
O / ’ called the fundamental parallelepiped

n
Ci - bi: Ci € [0,1)}

(<

... P®=B-DO =

e Useful for measuring arbitrary points relative to a lattice
« P(B) is half-open and v + P(B) for v € L(B) forms a tiling of R"
* For every x € R", thereis a unique v € L(B) st.x € (v + P(B))
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Determinant

* The determinant of a lattice L(B) is det(£) = |det(B)|
* Note that this is well defined, as for every unilateral U

|det(B - U)| = | det(B) - det(U)| = |det(B)|
* The determinant corresponds to the volume of the

fundamental parallelepiped
* The determinant is the reciprocal of the density (i.e., big determinant
means sparse lattice)
* Moreover, the volume is the same for every fundamental region
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Successive Minima

* Let A, (L) be the length of the shortest non-zero vector in a
lattice L
e Usually, in terms of the Euclidean norm
* The shortest vector is never unique, as foreveryv € L also —v € L

* More generally, A, (L) denotes the radius of the ball containing
k linearly independent vectors

* For k = n the ball contains a basis of the entire space

e m—-—

S _——-
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Minkowski’s Theorem

* Lemma (Blichfeld): For any lattice £ and set § with vol(§) >
det(L), 3 distinct z,,z, € Sst.z, —z, € L
* Consider §,, = 8§ N (x + P(B)) withx € L(B)
* 50, 8 = Uyer(p) Sx and vol(§) = erL(B) vol(S,)
* Foreachx € L(B),S,—x=(S§—x)NnP(B) € P(B)
* Then, vol(SD(B)) < vol(§) = erL(B) vol(S,) = erL(B) vol(§, — x)
* There are distinctx,y € L(B) s.t. (S, —x)N (S, —y) # 0
*Takez € (5 —x)N (S, —y),sothatz; =z+x €Sy S Sandz, =
Z+yE€S, S5
*Hence,z; —z, = x—y € L(B)
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Minkowski’s Theorem

* Theorem (Minkowski): For any lattice £ and convex, zero-
symmetric, set § with vol(§) > 2™det(£), there exists a non-

zero lattice pointin &

%2 * LetS/2 = {x:2x € §} withvol(§/2) = 27"
27 vol(§) > det(L)
* Take z4,z, € §/2; by Blichfeld z; —z, € L
2Z1—22Z,
— € S

* Now, 2z, —2z,€ S and z,—z,=

» Corollary: For every £, we have that 1,(£) < +/n - det(£)Y/™

* Let £ = min ||x||s and assume £ > det(£)/"
xeL\0

* The hypercube C = {x:||x||, < £} is convex, symmetric and has
volume vol(C) = (2¢)"*> 2™det(L)
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Hard Problems

* SVP,: Given B, find vector in L(B) with length <y - 4, (L(B))

* GapSVP, : Given B, decide if ,; (L(B))is< lor=y

* SIVP,: Given B, find n linearly independent vectors in L(B)
with length < y - 1,,(L(B))

* CVP,: Given B and v, find a lattice point that is at most y times

farther than the closest lattice point
* Itis known that SVP,, < CVP,

* BDD: Find closest |attice point, given that v is already close
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General Hardness Results

1 nc/ loglogn \/ﬁ n AL loglogn/logn
® @ ® >

NP-hard NP N coNP cryptography P

* Exact algorithms take time 2™
* Polynomial-time algorithm for gap y = 2" loglogn/logn

* No better quantum algorithm known

NP hardness for gap y = n¢/1oglogn

* For cryptographic applications, we need y = (n)
* Not believed to be NP-hard for y = +/n
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Small Integer Solution Problem

* Fix dimension 1, and modulus g (e.g., ¢ = n?)

* Given random vectors a;, ..., a,, € Zg, find non-zero small
Z1, e, Zy € Z such that

- H n
Z1°a1 +Zz‘a2 +"’+Zm'am — O |an

e Observations:

* Trivial if the size of the z;’s is not restricted (Gaussian elimination)
* Equivalently, find non-zero shortz € Z™ st. A-z = 0 € Zg

16
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SIS as a Lattice Problem

* Matrix A = (aq, ..., a,,) € Zg™™
LY(A) ={z€eZ™ A -z=0}

Find short (||z]| < B < q)
solutions for random A4

~

* Theorem (Ajt96). For any n-dimensional
lattice, it holds that:

GapSVP; 7, SIVP, o < SIS,

(0,q9)

(0,0)

w

\_/

v

* Also true for any lattice coset L:(A) ={z € Z™A-z=u} =u+

L+(A) (i.e., inhomogenuous SIS)

17
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Learning with Errors [Reg05]

* Dimension n, modulus g > 2, noise distribution y
* Find s € Zg given m noisy random inner product equations

/S * Trivial without noise
K n A  @Gaussian distribution over Z,
€ Zq with std deviation = v/n and «< g
et e Rate parametera K 1
* Need aq > +/n for worst-case
/:fbt hardness and because there is an
Small noise € Zg' < exp((aq)?)-time attack
le;| < ag;a K 1 € Zg'

18
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Decisional LWE

* Distinguish the matrix A and the vector b from random (A4, b)
* Decisional LWE is equivalent to Search LWE

,St
4 A
e
~ — y(n+1)xm
et bt — Uq
/:/bt |
Small noise € Z7' ( Uniform distribution over ZSH )xm
leil Saqa <1 €

~
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LWE as a Lattice Problem

* Matrix 4 = (aq, ..., a,,) € Zg™™
LA)={zeZ™ z" =5s"-A}

LWE is BDD on L(A): Given
bt~ z'=s'-Afindz %

* Theorem (Reg05,Peil0). For any n-
dimensional lattice, it holds that:

GapSVP,,,SIVP,,, < LWE

(0,

q)

/\\

(0

0)

<

w

* Quantum reduction for broad parameters [Reg05]

* Classical reduction for restricted parameters (e.g., g = 2") [Peil0]

20
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Hardness of LWE

* More formally define the LWE distribution as

A « ZZX’";S « Lg;
LWE|[n,m,q,x] =3 (4, b):

e —x™ b =[s"-A+ e,

e Parameters:

ca =1/poly(n) ora = 27™° (stronger assumption as a decreases)

*m = 0O(nlogqg) orm = poly(n) (stronger assumption as m
increases)

g = 2" or q = poly(n) (stronger assumption as g increases)
* Noise distribution x such that P[|e| > aqg: e « x] < negl(n)

NI
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Simple Properties

* Check a candidate solution t € Zg
* Test if all the elements in b — (t, a) are small
*If t # s,then b — (t,a) = (s — t,a) + e is well-spread in Z,

* Shift the secret by any r € Z
* Given (a,b = (s,a) + ¢e),output (a,b’ = b +(r,a) =(s+r,a) + e)
* Using random 7" yields a random self-reduction

* Amplification of success probabilities (i.e., non-negligible success
probability for random s € Z; implies overwhelming success
probability for every s € Zj)

* Multiple secrets: (a, b, = (s, a) + e, ...,(s;,a) + ¢e;)
indistinguishable from random (a, b4, ..., b;)

~
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Search/Decision Equivalence

e Suppose we are given an oracle that perfectly distinguishes
pairs (a,b = (s,a) + e) from random (a, b)
* To find 54, it sufficesto test if s; = 0

* Because we can shift s; by 0,1, ...,g — 1 (assuming g = poly(n))
* Then we can do the same for s,, ..., s,

* The test: For each (a, b), choose random r € Z, and invoke the
oracle on pairs (a' = a — (1,0, ...,0),b)
* Notethath =(s,a’) +s,-r+e
*If s; = 0,then b = (s,a’) + e and the oracle accepts
* If s; # 0, then b is uniform (assuming g prime) and the oracle rejects

Nk
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LWE with Short Secrets

* Theorem [MO01,ACPS09]: LWE is no easier if the secret is drawn
from the error distribution y
* Intuition: Finding e equivalent to finding s (i.e., b* — e* = s' - A)

* Transformation from secret s € Z’C} to secret e « y"
* Draw samples to get (4, b' = s' - 4 + e") for square, invertible, A
 Transform each additional sample (a, b = (s, a) + ¢e) to

a =—-A"1-aqb =b+(ba)=(ea)+e

 This maps uniform (a, b) to uniform (a’, b’), and thus works for
decision LWE too

~
&3 SAPIENZA
QU  UNIVERSITA DI ROMA

24



LWE vs SIS

* SIS has many valid solutions, whereas LWE only has one
* LWE < SIS

* Given z such that A - z = 0 from an SIS oracle, compute b' - z
* Now, bt - z = e’ - zis small in the LWE case, whereas b' - z is well-
spread in case b' is uniformly random

e What about the other direction?

* Not known in general
* True under quantum reductions
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Efficiency of LWE/SIS

* Getting one random-looking scalar b; € Z, requires an n-
dimensional inner product mod g

St  Can amortize each column a;
k . A over many secrets s;, but the
€ Lq latter still requires O(n) work per
n Gl scalar output
* Public keys are rather large, i.e.
[/bt > n“ time to encrypt/decrypt an
Small noise € Zg' < n-bit message
le;| < agq;a < 1 €Zg  + Canwe do better?

26
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Wishful Thinking...

 Get d pseudorandom scalars

st x at + e' =, bt from just one cheap product
( operation *

. dxd : d

e Zg Replace Z;”% chunks with Z

* Main question: How to define the product * so that (a, b) is
pseudorandom

* Requires care: coordinate-wise product insecure for small errors

* Answer: Let x be multiplication in a polynomial ring, e.g.
Zg[X]/(X* + 1)
* Fast and practical with the FFT: d log d operations mod g
* The same ring structure used in NTRU [HPSOS8]

27
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LWE over Rings/Modules

* Let R = Z[X]/(X% + 1) for d a power of 2and R, = R/qR
* Elements of Rq are degree < d polynomials with coefficients mod g
* Operations over R, are very efficient using FFT-like algorithms

e Search LWE: Find secret vector of polynomials s in Rg given

 Each equation is d related equations
on a secret of dimensionn =d - k

. t _ / e WE:d=1k=n

S| x a; + € _<bi . Ring-LWE:d =n,k = 1

)

* Module-LWE: Interpolate
€Zg - Decision LWE: Distinguish (a;, b;)
from uniform (a;, b;) in R§ X R,
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Hardness of Ring/Module-LWE

* Theorem [LPR10]: Forany R = O

R*-GapSVP < search R*-LWE < decision R*-LWE

* Can we dequantize the worst-case/average-case reduction?

* The classical GapSVP < LWE reduction is of little use: for the
relevant factors, GapSVP for ideals (i.e., kK = 1) is easy

* How hard (or not) is GapSVP on ideal/module lattices?

* For polynomial approximation no significant improvement versus
general lattices (even for ideals)

* For subexponential approximation we have better quantum
algorithms for ideals, but not for k > 1

* Reverse reductions? Seems not without increasing k...
g DIENZA
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Why Lattice-based Cryptography?

* Provable security

* If scheme is not secure, one can solve hard mathematical problems
* Not always happens in current implementations (e.g., RSA)

* Worst-case security

* If scheme not secure, one can break every instance of lattice problems
* Factoring and discrete log only guarantee average-case security

* Still unbroken by quantum algorithms
* No progress over the last 50 years
e But we don’t know: see https://eprint.iacr.org/2024/555
* Efficiency
* Mainly additions/multiplications, no modular exponentiations

30
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https://eprint.iacr.org/2024/555

Basic Cryptographic
Applications
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One-Way Functions

* Parametersm,n, q € Z, key A € Zg™™
* Input x € {0,1}, output f4(x) =A-x

* Theorem [Ajt96]: For m > nlogq, if SIVP is hard to
approximate in the worst-case, then [, is one-way

* Cryptanalysis: Given 4, y, find x suchthaty = A4 - x
 Easy problem: find arbitrary u suchthaty = A-u
e All solutions y = A - x are of the form t + L1(4)

* Requires to find small vector in t + L1(A) or to find a lattice point
v € L1(A) close to t (average-case instance of CVP w.r.t. L (4))
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Collision-resistant Hash Functions

Collisions exists

; inherently, but are
aC) hard to find
efficiently

*Given A = (ay, ..., a,,), define h,: {0,1}" - Zg

ha(zyy ey 2) =@y 21+ +a,, 7,

* Set m > nlogq in order to get compression
* Acollisiona, -z, ++a,, -z, =a, -z, + -+ a,,z, yields a, -
(z,—2z)+ - +a,, - (z,—2,) =0,withz,, — z/,, € {—1,0,1}

~
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Commitments

* Analogy: lock message in a box, give the box, keep the key
 Later give the key to open the box

* Implementation:

* Randomized function Com(x; ), where x is the message and r is the
randomness

* To open a commitment simply reveal (x,7)

* Security properties
* Hiding: Com(x; 1) reveals nothing on x
* Binding: Can’t open Com(x;7) to x' # x
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Commitments

* Take two random SIS matrices 4, A,
* The message is x € {0,1}" and the randomness is € {0,1}"

* Commitment: Com(x;71) = [ 4, (x,7) =A; - x+ A, 1
* Hiding: A, - 7 = [, () is statistically close to uniform over Zg, and
thus x is information-theoretically hidden
* Binding: Finding (x,7) and (x',r’) such that Com(x;r) =
Com(x’; ') directly contradicts the collision resistance of /4 4

~
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Leftover Hash Lemma

e Let H be a family of universal hash functions with domain D
and image J. Then, for x «¢ D, h «¢ H,and u «4 J:

SD (1, h(x)); (h,u)) < 1/2 -\[1TT/ID)

* Note that the function h,(r) = [4 - 7], is universal
* AsVT1# 13 Pylhy(ry) = hy(rp)] = PylAd-(ry —1) =0 =q™™"
* Hence, for r <4 {0,1}"", A < ngm, and u «g Z7, whenever
m=2+nlogq + 2n

SD ((A, [A-7],); (4, u)) <1/2-/q"/2m < 27"
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Pseudorandom Functions [GGM84]

 Family F = {F,:{0,1}*—> D} s.t. querying F;, for random s, is
indistinguishable from querying random function U

|

* Countless applications: secret-key encryption, message
authentication codes, secure identification, ...

~
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Constructing PRFs

* Heuristically: AES, etc.
* Fast, secure against known cryptanalytic attacks, not provably secure

* From any OWF [GGM&4]:
* For any length-doubling PRG G (s) = (G, G4), let

FsQ1y ey 2) = G (o Gy (8) ++)
* Provably secure
* Inherently sequential (i.e., = k iterations)

* From any synthesizer [NR95,NR97,NRROO]
e Low depth: NC, NC? or TC" (i.e., 0(1) depth with threshold gates)
* Provably secure

~
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Synthetisers [NR95]

* A deterministic function S: D X D — D such that for any
polynomial m, and for uniform a4, ...,a,,, b, ..., b,,, €D

Uniform distribution

{S(Cli, b])} =~ {Ul,]} over PMxm
bl b2 *e° b1 b2
a; S(aq,by) S(aq, by) ~ ai Uj 1 Uy
a, |S(az,by)|S(ay, by) a, U, 1 U, -
* An almost length-squaring PRG with locality

~b
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PRFs from Synthetisers [NR95]

* Base case: One-bit PRF F;  (x) = s, €D

* Inductive step: Given a k-bit PRF family ¥ = {F.: {0,1}*—> D}
define F, . :{0,1}**> D

SL)SR™®

Fs, se (x, xp) = S(FSL (x1), Fs . (xg))

51,0051,1 S1,x4 1S
52,0021 81

e X2 Feooa (g, o, X
53,0093,1° " Sq ., 5 {Su}( 17 0 1)
54,054,117 Sqx,

* Security: Every query to F, (x,), F5, (xr) defines pseudorandom
inputs a4, ..., a,,, by, ..., b,,, for the synthetiser

40
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Synthetisers from LWE?
* Hard to tell apart (a;, b; = (a;, s) -

- e;) from random (a, b)

* By a hybrid argument, the following are pseudorandom

Ai € ZS,AL' * Sl
* This suggests the fol

E1,1 € ngn,Ai * SZ

owing synthetiser from LWE

E,, €Z*™, ..

S S,
A, A -8 +E; A -85, +E,
A, A, -S1 +E;, A, -8, +E,,

* But synthetisers must be deterministic!

41
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Learning with Rounding [BPR12] X1 '_6 q =24

* Generate errors deterministically 12— 0—o0
* Round Z,, to a sparse subset Z,, 2
* Forp < q, let [x], = [(p/q) - x] mod p ~
* The LWR problem: Tell apart (a, b = [{a, s)],) € Z, >< Z from

random (a, b)
* LWE conceals low-order bits by adding small random error

* LWR just discards those bits instead

* LWE < LWR for g = p - n®® (seems 2™-hard for g = p - /n)

* Proof idea: w.h.p. (a, [{a, s) + ¢l,) = (a, |{a, s)],) and
(a, [U(Zqﬂ ) = (a,U(Zy)) where U(Zg) is unlform over Zj

e Reduction W|th Improved parameters in [AKPW13]
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Synthetiser-based PRF from LWR

* Synthetiser: S: Zg™" X Zy*™ — 73" "is S(A,5) = |A - S],
* Note that the range Z, is slightly smaller than the domain Z,

e Construction of PRF with domain {0,1}* for k = 2

* Tower of power moduligg > q4-1 > - > qq

* The secret key is 2k matrices S; ;, € ZZ;", fori € |k],b € {0,1}

* Depth d = log k of LWR synthetisers

“lsl,xl . SZ,XZ-‘qz ) lS3,X3 ) 54,X4-‘q2}q ) {LS5,X5 } 56;x6-‘q2 ) lS7,X7 . S8,x81qu “
1 1 do

e Each synthetiserisin NC!, and thus the PRF isin NC?

N
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Direct Construction
e Simple direct PRF construction from DDH [NR97,NRROO]:

— 'S'xi
F.'g;S]_,...,Sk(xl; ""xk) p— gl_[l i

e This can be implemented in TC°® < NC?° (albeit with huge circuit)

* Direct construction from LWE
* Public modulig > p
* The secret key is uniform 4 and short S, ..., S, over Lg
* The PRF evaluates a rounded subset-product function

FA,sl,_.,,sk(xl, vy X ) = {A : 1_[5261}
' p
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Proof Sketch

 Similar to the LWE < LWR proof
* Thought experiment: answer queries with

FA,Sl,...,Sk(xl' ey Xp) = KA . Sifl +x, - E) - 552 B Sik X
k » k v
— [A ¢ Sl ' + xl ¢ E ¢ Sl l]
i=1 I L=z .

e W.h.p. F(x) = F(x) due to small error and rounding

* Using LWE replace (4,4 - S, + E) with uniform (4,,4,)
* New function F(x) = [Axl -S;CZ Caee Si’ﬂp
* Repeatfor S,,...,S, toget F''(x) = [Ax]p = U(x)
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NIST Standards
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Falcon
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Digital Signatures

signature

K Sign 9 Vrfy 0/1

sk vk
* Syntax I1 = (KGen, Sign, Vrfy)
« KGen(1%): Takes the security parameter 1 € N, and outputs (vk, sk)

 Sign(sk, u): Takes plaintext u, and outputs a signature o
* Vrfy(vk, u, 0): Takes plaintext 4 and signature g, and outputs a bit

» Correctness: VA € N, V(vk, sk) € KGen(1%), Vu

P[Vrfy(vk, Sign(sk,u)) = 1]=1
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Lattice Trapdoors

* Recall: Lattice-based one-way functions
fa(x) =A-xmodq € Zj fa(s,e) =s*- A+ e"mod q € ZT
(short x, surjective) (short e, injective)

* Task: Invert [,
* Find the unique s (or e) such that f,(s,e) = s*- A4+ e"'mod ¢
* Given u = f4,(x) = A - ¥’ mod q, sample random x « f; *(u) with
probability proportional to exp(—||x||%/s?)
* How? Via a strong trapdoor forA4 (a short basis of L~ (4))
* Deeply studied question [Babai86,Ajtai99,Klein01,GPV08,AP09,P10]
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A Different Kind of Trapdoor [MP12]

* Drawbacks of previous solutions
* Generating A with short basis is complex and slow
* |nversion algorithms trade-off quality (i.e., length of basis vectors which
depends on the Gaussian std parameter s) for efficiency
* Alternative: The trapdoor is not a basis
* But just as powerful
e Simpler and faster

* Overview of method
 Start with fixed, public, lattice defined b\{ gadget matrix G which admits

very fast, and parallel, algorithms for f,
 Randomize G into 4 via nice unimodular transform (the trapdoor)
* Reduce f; ! to fG_l plus some pre/post-processing

50
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Step 1: The Gadget Matrix

o — 2k — k—1 1Xk
letq = 2% andtake g =[1 2 ... 2Kk-1] €
° ' . K k
Toinvert f,: Zy X 1" — Zg
fo(s,e) =s-g+e=[s+ey 2s+e; - 2¥ls+e, ;]modgq
* Get Isb of s from 2%¥~1s + ¢,,_,, then repeat for the next bits of s
* Works whene,_; € |[—q/4,q/4)
* To sample Gaussian preimage for u = f,(x) = (g, x)
*Fori € [0,k — 1], choose x; « (2Z + u) andletu « (u —x;)/2 € Z

*Eg, k=25« 2zp+u),u < (u—22y0 —u)/2 =—27y, X1 <
(2Z1 — Zo), (g,x> — ZZO + u + 2(221 — Zo) = U + 4‘Z1 —Uu m0d4‘
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Step 1: The Gadget Matrix G

* Alternative view: The lattice L1 (g) has basis

[ 2
—1
S =

2
—1

2
—1

2

€ ZK*F withS§ =2-1,

» The above inversion algorithms are special cases of the randomized
nearest-plan algorithm [Bab86,Kle01,GPVOS8]

* Define G = 1,,Qg € Z™™ (where ® is the tensor product)
 Computing fG"l reduces to n parallel calls to fg‘1

* Also applies to H - G, for any invertible H € Zg™"
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Step 2: Randomize G

* Define semi-random [A4|G] for uniform 4 € Z*™
* It can be seen that inverting f[iﬁa] reduces to inverting /7 * [CHKP10]

« Choose a short Gaussian R € Z™M*1 1084 gnd |et

A=ae-|" ﬂ — [4|G — AR]

* A is uniform because, by the leftover hash lemma, [A|AR] is
statistically close to uniform when m = nlogq

* Alternatively, [I|A| — A - R, + R,] is pseudorandom under the LWE
assumption (in normal form)
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A New Trapdoor Notion

* We constructed 4 = [A|G — AR]
» Say that R is a trapdoor for A with tag H € Zg™" (invertible) if

A-m=H-G

* The quality of Ris s;(R) = max ||R - ul|

w:fjull=1
* Fact: s;(R) = (\/rows + Vcols) - r for Gaussian entries w/ std dev r
* Also R is a trapdoor for A — [0|H' - G] withtag H — H' [ABB10]
* Relating new and old trapdoors

* Given basis S for L+(G) and trapdoor R for A, one can efficiently
construct basis S 4 for L1(G) where ||S4|| < (s;(R) + 1) - |||
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Step 3: Reduce f; ! to !

* Let R be a trapdoor for A withtag H =1: A - [ﬂ =G

* Inverting LWE
e Given b = s'- A + €', recover s from b' - [ﬂ =s'-G+e'- [ﬂ
* Works if each entry of e* - [ﬂ € [—q/4,q/4)
* Inverting SIS
* Given 1, sample z « f *(u) and output x = [ﬂ .z € fit (u)
°lndeed, A x=G-z=u Leaks about R!
Y =E,[x-x']= Rz@z Rl ~ R - R"

55
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Step 3: Perturbation Method [P10]
& RN

22 2 I 21 ZZSZ'I

. E.§ oy — <2 bty .
 To fix the covariance u-2u=s‘"—u-2;-u>0

* Generate perturbation vector p with covariance s -1 — R - R"
* Sample spherical zsuchthatG - z=u—A4-p

°Outputx=p+[ﬂ-z

A-x=A-p+A-[ﬂ-zzA-p+G-z=u
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Falcon: Digital Signatures from SIS

* Generate uniform vk = A with trapdoor sk =T

* To sign u, use T to sample o = x € Z™ suchthat 4 - x = H(u),
where H is a public hash function

e Recall that x is drawn from a Gaussian distribution, which reveals
nothing about the trapdoor T

* To verify (u, 0 = x) under vk = A simply check A - x = H(u)
and that x is sufficiently short

* Security: Forging a signature for a new message u™ requires
finding a short x" suchthat A - x" = H(u™)
* This is equivalent to solving the SIS problem

 Signatures queries do not help because they reveal nothing about the
trapdoor T
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Canonical Identification Schemes

pk, sk

* Completeness: The honest prover convinces the honest verifier
(with all but a negligible probability)

* Passive Security: No (efficient) malicious prover knowing only
pk can convince the honest verifier

* Even in case the attacker knows many accepting transcripts
corresponding to honest protocol executions
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g
FS Transform _
pk, sk pk, sk
f=H(x,a)
* Given a canonical ID scheme, we can derive a signature scheme
as follows:
* Alice obtains o0 = (&, y) from the prover, using the secret key sk and
choosing f = H(x, a)
* Bob checks that (a, £, y) is a valid transcript, with § = H(x, a)
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The Fiat-Shamir Transform

Theorem [FS86]. If the ID scheme is passively secure, the
signature derived via the Fiat-Shamir transform is UF-CMA

* Remark: The original proof requires to model H as an ideal hash
function (random oracle)

* It is debatable in the community what such a proof means in practice

e Can we prove security in the plain model (i.e., no random
oracles)?

* Many impossibility results for general ID schemes

* Possible for some classes of ID schemes assuming so-called
correlation intractability
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Sufficient Criteria for Passive Security

pk, sk

* One can show the following criteria are sufficient for achieving
passive security:

* Special soundness: Given any pk and two accepting transcripts
(a,B,v) and (a, B',y") for pk with B # B, there is a polynomial-time
algorithm outputting sk

 HVZK: Honest proofs reveal nothing about the secret key sk
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Proofs of Knowledge

* The special soundness property implies that any successful
prover must essentially know the secret key
* In fact, any such prover can be used to extract the secret key:

* Run the prover upon input pk in order to obtain a transcript (a, 5, 7)
* Rewind the prover after it already sent @ and forward it another

random challenge ', which yields a transcript (a, 8, y")
* As long as 8 # ', special soundness allows us to obtain sk
* The above can be formalized, but the proof requires some care

* Because the transcripts (a, 8,v) and (a, 8, y") are correlated
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Honest-Verifier Zero-Knowledge

* How do we formalize that a trascript reveals nothing on sk?
* This is tricky: transcripts shall not reveal even one bit of sk

* Require that honest transcripts can be efficiently simulated
given just pk (but not sk)
 Whatever the verifier could compute via the protocol, he could have
computed by talking to himself (i.e., by running the simulator)

* A canonical ID scheme is perfect honest-verifier zero-
knowledge (HVZK) if 3 PPT S such that:

(pk, Sk,S(pk)) = (pk, sk, (P(pk, sk),V(pk)))
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Canonical ID Scheme from Discrete Log
[ params = (G, g,q) ]

y=p-w+ta —

X, W

* Special HVZK: Upon input pk = x, simulator § outputs (a, 5,7)
such that a = g /xP and B,y < L
* Special soundness: Assume we are given two accepting
transcripts (a, 8,y) and (a, 8, y") for pk = x, with 8 # '
* This implies g¥™V" = xB-B
e Thus, w = (y —y") - (B — B') "1 is the discrete logarithm of x
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Let’s Try the Same Idea using Lattices
[ pdaraiis ]

— Y

1
y=p:-s+tu —

(A,t),s

* HVZK: Upon input pk = (4, t), simulator § outputs («, 5, y)
suchthata =A-y—f-tand f «¢ Zg,y < Lg
* Special soundness: Assume we are given two accepting
transcripts(a, 5,y) and(a, B',y") for pk = (A, 1), with B # '
* ThisimpliesA-(y—y )= —-p") -t
e Thus,s = (y —9') - (B — B) listhe solutionforA-s =t
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Many Problems...

* The challenge space is small
e g ~ 214 for encryption
« g ~ 230 for signatures
« g ~ 232 for advanced applications
* This means that a successful prover can just guess [

* The vector s we extract is not guaranteed to be small

* Recall that removing the requirement of s being small makes lattice
problems trivial

* Solution: Choose small u, 5 and repeat the protocol in parallel

67 ITA DI ROMA
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Modified Protocol (Take 1)

Uy, ..., Uy g {0,131 M@
aj=A4-u 59 € (B Br)
vi=Bji-s+y > ( ) >

(A,t),s

* The verifier checks the above Vj = 1, ..., k and that the
coefficients of each y; are small (i.e., in {0,1,2})

* Special soundness: Given A+ y; = [;-t+a;and A-y; =

:8]’ -+ aj with ,8] == ,B]’, extract s = (y] — y;) . (,B] — ,B;)_l
* The elements of y; — y}- arein {—2,—1,0,1,2}, and §; — ,8]5 isin
{—1,1}, so s also liesin {—2,—1,0,1,2}

~
&3 SAPIENZA
QU  UNIVERSITA DI ROMA

68



Insecurity of the Protocol

* There are some caveats:

* We extracted a slightly bigger secret
* We need to repeat for k = 128 or k = 256 times

* Even worse, the protocol does not satisfy HVZK
* Suppose that the challengeis f = 1

EEEE [ - s = s has coefficients in {0,1}
_I_

EEEE u has coefficients in {0,1}

EEE ¥ coefficients

69 Lattice-based Cryptography — Daniele Venturi

(<A SAPIEN

QWS?  UNIVERSITA DI ROMA



Possible Fix?

* Maybe we can sample u from a larger domain?
* Suppose that the challengeis f = 1

nn [ - s = s has coefficients in {0,1}
_|_

nn u has coefficients in {0,1,2,3,4,5}

nnn Y coefficients

* Whenever a y coefficient is 0 or 6 we know that s is 0 or 1, but the
other coefficients are hidden (i.e., they could be equally 0 or 1)

* So, s only effects the probability that a y coefficient is 0 or 6

SAPIENZA
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Possible Fix?

* Maybe we can sample u from a larger domain?
* Suppose that the challengeis f = 1

nn [ - s = s has coefficients in {0,1}
_|_

nn u has coefficients in {0,1,2,3,4,5}

nﬂﬂn Y coefficients

* In other words, the coefficients 1,2,3,4,5 are equally likely to appear
regardless of the secret key

* Natural idea: Send y only when all the coefficients are in this range
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In General...

* Suppose s has coefficients in {0,1, ..., a} and that u has
coefficients in {0,1, ..., b — 1}
* Here, b > a
*Then, foralla <i < b,wehave P[s+u=1i]=1/b
* Moreover, there are b — a such i’s and thus 1 — a/b probability of
keeping the value s secret
* The probability that a y coefficientisin{1,..,b —1}is1 —1/b
* The probability that they all are is (1 — 1/b)™
* The probability that they all are for all y+, ..., ¥ is (1 — 1/b)™F
* By setting b = mk, we get (1 — 1/b)™ ¥~ 1/e
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Modified Protocol (Take 2)

Uy, ..., Uy <4 {0, ..., mk}™ M
(A,t),s

* The prover checks whether any of the coefficients contained
iny;isOormk+1

 If itis, abort and restart the protocol

* The verifier checks the above Vj = 1, ..., k and that the
coefficients of each y; are small (i.e., in {0, ..., mk})
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Modified Protocol (Take 2)

1ty g {0, o, MY (@ m)
Ly 9 BBy
(4,0),s

* Special soundness: Given A+ y; = f; - t+ajand A-y; =
B} -t + a; with B; # B/, extracts = (y; —v) - (B; — B)™*

* The elements of y; — ¥ are in {—mk, ...mk}, and ; — f3; isin
{—1,1}, so s also lies in {—mk, ..., mk}
* HVZK: Yes, as now y; never depends on s

e Caveat: What is a; in case of abort?
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Modified Protocol (Take 3)

Uy, ..., Uy <4 {0, ..., mk}™

vy =0 s+, = [ E— ’
(A, t),S Check A4 y] = ,8] -+ aj

* The verifier checks the above Vj = 1, ..., k and that the
coefficients of each y; are small (i.e., in {0, ..., mk})

* But now it also additionally checks that
[a =HA-y,—f1t, ..., AV — Py 1) ]

* |n case of abort, the HVZK simulator can still send a random «
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In Practice

* The previous protocol still needs to be repeated in parallel k =
128 or 256 times

* And this is the best one can get for arbitrary lattices

* However:

* The proof size for one equation is roughly the same as the proof size
for many equations (amortization with logarithmic growth)

* Working with polynomial rings instead of Z, allows for one-shot
approximate proofs (i.e., the coefficients of s are small)

* Using more complex techniques, one obtains almost one-shot exact
proofs (i.e., the coefficients of s are in {0,1})
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Public-Key Encryption

ciphertext
Alice @ " Enc ]C Dec L
pk sk

* Proposed by Diffie and Hellman in their seminal paper [DH76]

* First realization by Rivest, Shamir and Adelman based on the
hardness of factoring [RSA78]
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Chosen-Plaintext Attack (CPA) Security

pk Challenger ¢

xO' X1
C

guess b pk, sk, random b

¢ < Enc(pk, xp)

* The attacker cannot even guess a single bit of the plaintext
e Remember that the messages are chosen by the adversary
* CPA security implies hardness of recovering the message
* CPA security implies hardness of recovering the secret key

b4 O/APTENZA
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Regev PKE [Reg05]

* Key Generation: pk = (A, b) and sk = s, where b* = s*- A + e" and
SEZLg,AEL™
* Encryption: The encryption of x w.r.t. pk is made of two parts
* Ciphertext preamble ¢, = A - r for random r € {0,1}™
* Ciphertext payload c; = b'-r+x-q/2
* Bob outputs ¢, — st ¢y = x-q/2
* Security: By LWE we can switch (4, b) with (A, b) for uniformly
random b*

* By the leftover hash lemma, we can finally replace ¢, with uniformly
random c,, so that ¢, hides x information theoretically
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Dual Regev [GPVOS8]

* Key Generation: pk = (A,u) and sk = r,whereu =A-randr €
(0,1}, A € ZP™
* Encryption: The encryption of x w.r.t. pk is made of two parts
* Ciphertext preamble ¢, = b* = s* - A + e for random s € Zj
* Ciphertext payload ¢, = st -u+e' +x-q/2
* Boboutputsc; —cyr=x-q/2
* Security: By the leftover hash lemma, we can switch u with

uniformly random u
* By LWE we can switch (¢, ¢;) with uniformly random (¢, ¢;)
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Primal versus Dual
* Public key

* Primal: pk is pseudorandom with unique sk
* Dual: pk is statistically random with many possible sk

* Ciphertext
* Primal: A fresh LWE sample with many possible coins
* Dual: Multiple LWE samples with unique coins

* Security
* Primal: Encrypting with uniform pk induces random ciphertext

* Dual: By LWE can switch the ciphertext to random
* Efficiency: The matrix A can be shared by different users
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Most Efficient [LP11]

* Key Generation: pk = (A, u) and sk = s, where u' = s*- 4 + €'
ands € ", A € Zy™"
* Encryption: The encryption of x w.r.t. pk is made of two parts
* Ciphertext preamblec, = A-r + e’ forr € y"
* Ciphertext payloadc;, = u'-r+e’ +x-q/2
* Bob outputs ¢, — st ¢y = x-q/2
* Security: By LWE we can switch (4, u) with (4, u) for uniformly
random u
* This requires LWE with secrets from the error distribution
* Next, we can replace (¢, ¢;) with uniformly random (c, ¢;)
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Chosen-Ciphertext Attack (CCA) Security

pk Challenger ¢

m
X0, X1
C pk, sk, random b
C FC m' = Dec(sk,c")
m
auess b ¢ < Enc(pk, xp)

* The above notion captures a strong non-malleability guarantee

* No attacker can maul a ciphertext ¢ for message m into a ciphertext ¢
for message m related tom

* The gold standard for security of PKE in practice

b4 O/APTENZA
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Fujisaki-Okamoto Transform

* The FO transform [FO99,FO13] turns passively (IND-CPA) secure
PKE schemes into actively (IND-CCA) secure ones
* The transformation requires two hash functions (random oracles)

* The obtained scheme is better understood as a key encapsulation
mechanism (KEM)

ciphertext

pk sk

* We can combine a KEM with an SKE scheme to get a PKE scheme
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One-Wayness of PKE

pk, c* Challenger ¢
m, c '
yes/no
ml
pk, sk
m" « M

c* < Enc(pk,m")

* OW-CPA: PKE makes it hard to guess the message
* The message is uniformly random and unknown to the attacker

* OW-PCA: As before but now the attacker can query a plaintext-
checking oracle which allows to check if Dec(sk,c) = m
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Modularization of the FO Transform
PKE

IND-CPA \ S i - }

PKE / OW-PCA IND-CCA
OW-CPA

 We can view FO as the concatenation of two transforms U o T

e The first transformation takes care of derandomization and allows to
go from IND-CPA to OW-PCA

* The second transformation takes care of hashing and allows to go
from OW-PCA to IND-CCA
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Transformation T: From IND-CPA to OW-PCA

m
G T Emc © ° pDec "
pk sk

* Encryption becomes deterministic (the randomness is G(m))

* Decryption re-encrypts m' using randomness G(m’) and
outputs m' if and only if it obtains ¢

e Theorem [HKK17]: Assuming (Enc, Dec) is IND-CPA (OW-CPA),
(Enc’,Dec’) is OW-PCA

88
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Transformation U: From OW-PCA to IND-CCA

me M
H Enc
pk sk

* Encapsulation outputs k = H(c,m) and ¢

* Decapsulation obtains m' = Dec(sk, ¢) and outputs m’
e Here, m' could be L (explicit rejection)

e Theorem [HKK17]: Assuming (Enc’, Dec’) is OW-PCA,
(Encaps, Decaps) is IND-CCA

89
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Advanced Cryptographic
Applications




|dentity-Based Encryption

* Postulated by Shamir in 1984 [Sha84]

* Avoids the need of certificates
* Introduces the so-called key escrow problem

* First realization by Boneh and Franklin in 2001 [BFO1]
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Selective Security of IBE

1D Challenger

mpk

ID
SkID — KGen(mSk, ID)

mpk, msk, random b

X0, X1 c < Enc(ID*, x;)
C

guess b

* Every selectively secure IBE is also fully secure with an
exponential loss in the parameters
* Also, general transformations are known
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Warm-up Construction [CHKP10]

e Public parameters: mpk = (4,, A%, A7, A5, A5, u)
* Assume, for simplicity, |[ID| = 2
* Master secret key: Trapdoor for 4,

* Secret key for identity ID = 01: Short vector s s.t. Fy; - s = umod g,
where Fo; = [Ag|A7|A3]
* Note: A trapdoor for A, implies a trapdoor for F,

* Encryption: Dual Regev encryption of x w.r.t. matrix F,,
* The ciphertextiscy, =1t Fy; +e‘andc, =1t -u+e’ +x-q/2
* Bob outputsc; —cj s~ x-q/2
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Simulation

* Assume the challenge identity is ID™ = 11
* The reduction can’t know the secret key for ID*

e Choose Ay, A1, A5 uniformly at random, but sample A7, A9 with
the corresponding trapdoors

* The reduction can derive trapdoors for F,, = [4,|A|A%],
Fo, =[A,|AY|A3], and F,, = [A,|A7|A%] but not for
T 11 a1
Fi1 = [A0]|A1]47]
* This allows the reduction to simulate key extraction queries while
embedding the LWE challenge in the simulation
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A More Efficient Construction [ABB10]

* Public parameters: mpk = (4y, 41,G,u)
* Master secret key: Trapdoor for 4,

* Secret key for identity ID: Short vector s s.t. F;5, - s = umod g,
where FID — [A()lAl + ID - G]

* As before, a trapdoor for A, implies a trapdoor for F;
* Encryption: Dual Regev encryption of x w.r.t. matrix F;,
* The ciphertextiscy, =r'-F;p + etandc;, =1t u+e’ +x-q/2

e Boboutputsc, —cj-s=r‘-u+e +x-q/2—-1"-Fpp-s+e"-
s=rtu+e +x-q/2—-r"-u+e-s=x-q/2

95
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Simulation Revisited

* Assume the challenge identity is ID*
* The reduction can’t know the secret key for ID*

* The reduction does not know a trapdoor for A4,, but it knows a
trapdoor for the gadget matrix &

*let A, =|Ay-R —ID" - G|, where R is random and low-norm
* This is indistinguishable from the real 4,
¢ NOte that FID — [AOlAO . R + (ID — ID*) . G]
* Using the technique of [MP12], we can derive a trapdoor for F;j
given a trapdoor for 4,
* This allows to simulate key extraction queries for all ID # ID”
* The LWE challenge can be embedded as before
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a=(aq..,ay) sky,
 Decryption reveals x if and only if (a, b) = 0
* Here, we can also be interested in attributes privacy

* Can be used to obtain predicate encryption for polynomial
evaluation, CNFs/DNFs of bounded degree, and fuzzy IBE
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Generalizing to Inner Products [AFV11]

* Public parameters: mpk = (4,44, ..., A4, G, u)

* Master secret key: Trapdoor for A
* Secret key for b: Short vector s, s.t. Fj, - s, = umod g, where Fj, =
[A| 2 b; + Aj]
* Encryption: Dual Regev encryption of x w.r.t. matrix A
* The ciphertextiscy, =1t -A+e', ¢’ =rt-u+e' +x-q/2,and c; =
rt- (A;+a; - G) + e; (soitindeed hides a)
*Bobsetsc, =Y;b;-c;=1r"-Q;b;-A;+X;a;,-b;-G)+ ;b - e
whichequals ' - Y, b; - A; + X; b; - ¢;
* Hence, [cylc,] = 1t - [A| X; b; - A;] is a dual Regev ciphertext
* Bob outputs ¢’ — ¢+ s, —Cp, -5, ®x+q/2
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Attribute-based Encryptlon [SWO04]

a=(aq..,ay) sk
* Decryption reveals x if and only if f (a) =0
* Here, we are not interested in attributes privacy

* Plenty of applications for privacy-preserving data mining and in
cryptography for big data
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Handling Multiplications [BGG+14]

eletc) =1t (A;+a,-G)+ e} andc; =1t (4,+a, - G) + &5
*Want: ¢}, =1 (A;,+a, -a, - G) + e,
« Compute (A,+a, - G) -G '(=A,) =4, -G '(-A,) —a, A,
* Compute (4,+a, -G)-a, =a,-A,+a,-a, G
* The differenceis A, +a,-a, -G
*So,weletc', =c} -G (=4, + - a4
* G~ '(—A,) and a, are small and do not effect noise
e As usual, additionallyletcy; =rt-A+e', ' =rt-u+e +x-q/2
*Ifa, -a, =0, then[cy|c,] = 1t- [A]|A,]
* The secret key is a short vector s, s.t. [A|A15,] -5, = umodq
* Bob outputs ¢’ —¢j -5, — €, 5, ®x-q/2
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Computing over Encrypted Data

e Can we have a (public-key) encryption scheme which allows to
run computations over encrypted data?

* Question dating back to the late 70s
* Ron Rivest and "privacy homomorphisms"

* Partial solutions known
* E.g., RSA and Elgamal enjoy limited forms of homomorphism

* First solution by Craig Gentry after 30 years
* The "Swiss Army knife of cryptography”
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Motivation: Outsourcing of Computation

* Email, web search, navigation, social networking, ...
* What about private x?

~
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Outsourcing of Computation - Privately

Dec(sk,y)
= f(x)

Q.

a4 B
Wish: Homomorphic evaluation function:
Eval: pk, f,Enc(pk, x) = Enc(pk, f (x))

A y
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Fully-Homomorphic Encryption (FHE)
¢ = Enc(pk, x) /j

y = Eval(pk, f, ¢) .

)
pk, sk pk

Correctness: Privacy:

Dec(sk,y) = f(x) Enc(pk, x) =~ Enc(pk, O|x|)

FHE = Correctness V efficient f = Correctness for universal set

* NAND

Levelled FHE: Bounded depth f « (+,X) over a ring

~
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A Paradox (and its Resolution)

x2 lfxl — O

f(x1,%2,%3) = { : _
¢; = Enc(pk, x1) X3ty =1

¢, = Enc(pk, x3) Enc(pk, x,)
c; = Enc(pk, x3)

AH! So X1 = 0
Eval(pk, f; (C11 C2, CS))

* But remember that encryption is randomized!
* Output of Eval will look as a fresh and random ciphertext
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Syntax of FHE

* More formally: I = (KGen, Enc, Dec, Eval)

« KGen(1%4, 17): Takes the security parameter 1 € N and another
parameter T € N, and outputs (pk, sk)

* Enc(pk, x): Takes a plaintext bit x, and outputs a ciphertext c
* Dec(sk, c): Takes a ciphertext ¢, and outputs a bit x
« Eval(pk, T, ¢): Takes ¢ = (cq, ..., ¢¢), and outputs another vector ¢’

* Correctness: Let C = {C;},en- Then Il is correct for C if VA, T €
N, V(pk, sk) € KGen(1%4, 1%):

vx € {0,1}: P[Dec(sk, Enc(pk,x)) = x]=1

vI € C,,Vvx € {0,1}': P[Dec(sk, Eval(pk, T, Enc(pk,%))) = I'(xX)]=1

Nk
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Degrees of Homorphism

* Fully-Homomorphic Encryption: Correctness holds for C such
that C; already contains all Boolean circuits
* No need to consider the additional parameter 7

* Somewhat/Levelled Homomorphic encryption: Correctness
holds for the family C such that for all T € N the set C; contains
all Boolean circuits with depth 7

* Additively Homomorphic Encryption: Correctness holds for C
such that C; contains all Boolean circuits with only XOR gates

* No need to consider the additional parameter

~
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Trivial FHE?

* Let (KGen, Enc, Dec) be any PKE scheme

* Define the following fully-homomorphic PKE
(KGen, Enc, Eval’, Dec’):
« Eval’'(pk,T',c) = (T, ¢)
* Dec'(sk,c) = I'(Dec(sk,c))

Wish: Complexity of decryption much less
than running the circuit from scratch
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Strong Homomorphism

* The simplest (and strongest) requirement is to ask that fresh
and evaluated ciphertexts look the same

* We say that Il is strongly homomorphic for C = {C; },¢y, if for
allT € N, every ' € C, and x € {0,1}%, it holds

(pk, sk) «; KGen(1%,1%)
¢ <4 Enc(pk, x), ¢’ <4 Enc(pk, (X))

NS Y

~gs OF ~¢

Freshy ;(1) = {(pk c,C'): >

(pk, sk) «¢ KGen(1%,17) }

valy (1) = {(P ek ¢ «¢ Enc(pk, %), ¢’ <4 Eval(pk,T, ¢

hd OAPIENZA
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Strong Homomorphism

* Assume the class C contains some C« which includes AND and
XOR (or NAND) gates

* Then we can evaluate every circuit by repeatedly evaluating
each gate on the outputs of preceedings gates

* By strong homomorphism, the output distribution when evaluating

any I' is at most negl(A4) - size(I') far from that of a fresh encryption
of the output

* Hence, we have obtained a strongly fully-homomorphic PKE!

110
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Compactness

* The following weaker property is often sufficient

* We say that Il is compact if there is a fixed polynomial bound
B(-) such that forall A, 7 € N, any circuit I with t-bit inputs and
1-bit output, and all ¥ € {0,1}¢:

(pk, sk) <5 KGen(1%,1%)

< B(A
e (4): c —¢ Enc(pk, x), c’ —¢ Eval(pk, T, E)

* Note that B does not dependon T

* An even weaker condition (dubbed weak compactness) is to have
B(A,7), but still say B(4, ) = poly(4) - o(log |C;])

hd OAPIENZA
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Secret-Key versus Public-Key FHE

* There is also a secret-key variant of FHE

* Just set pk = &, and have both Enc, Dec take only sk as input,
whereas Eval takes only I', ¢

e Simple transform from SK-FHE to PK-FHE: Given I =
(KGen, Enc, Dec, Eval) let [I' = (KGen', Enc’, Dec, Eval)
* KGen' runs KGen and lets pk = (cy, ¢1) where ¢y <4 Enc(sk, 0)
and ¢; <¢ Enc(sk, 1)
* Enc’' (pk, x) outputs Eval(Iiy, ¢, ) where I4 represents the identity

* |If I1 is strongly homomorphic, the output of Enc’ is statistically close
to that of Enc(sk, x)

* Both strong homomorphism and semantic security are preserved!
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The Gentry-Sahai-Waters FHE Scheme

* In what follows we will present the FHE scheme due to:

* C. Gentry, A. Sahai, B. Waters: "Homomorphic Encryption from

Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,
Attribute-Based." CRYPTO 2013

* Based on the Learning with Errors (LWE) assumption

* Only achieves levelled homomorphism

* But can be bootstrapped to full homomorphism using a trick by
Gentry (under additional assumptions)

* Plaintext space will be Z;, = [—q/2,q/2), for a large prime q

* For simplicity let us write [a], for a mod g

113
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Eigenvectors Method (Basic |dea)

* Let C; and C, be matrices for eigenvector s, and eigenvalues
X1, X, (i.e., S X C; = x; - 5)
* C; + C, has eigenvalue x; + x, w.rt. s
* C; X C, has eigenvalue x; - x, w.r.t. s

* |dea: Let C be the ciphertext, s be the secret key and x be the
plaintext (say over Z)
 Homomorphism for addition/multiplication
* But insecure: Easy to compute eigenvalues
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Approximate Eigenvectors (1/2)

-

* Approximate variant: s XC =x-s+e~x-s
* Decryption works as long as ||€]| < g

- - -
§XC1:X1°§+51 SXCZZXZ'S‘l‘eZ

lé1]le < g l€:]le K g
* Goal: Define homomorphic operations
Cadd — C1 + C2:

Noise grows a

SX (C1+Cy) =X +5X%XC, little!

:x1’§+é>1+x2'§“é)2
= (x1 +x,) -5+ (e; + ¢&,)
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Approximate Eigenvectors (2/2)

-

* Approximate variant: s XC =x-s+e~x-s
* Decryption works as long as ||€]| < g

- - -
§XC1:X1°§+51 SXCZZXZ'S‘l‘eZ

l€1lle < g €21l < g
* Goal: Define homomorphic operations
Crnuie = C1 X Cy: Noise grows!
S X (C;X Cy) = (x1- 5§+ €;) xC, Needs to be

- - - I
=x,(X,r§+8,) +8 xC,  °mal

=x1°x2°§+(x1°§2+§1XC2)

N
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Shrinking Gadgets

* Write entries in C using binary decomposit_i(c))n; ie_.g.
1 O
13 5 yields 111
C = 1 4] (mod 8) > bits(C) = 0 1 (mod 8)
0 O
* Reverse operation: -1 0-
2Nt .21 0 .. 0 O] ..
C=GxGO)=| g o o 281 . 2 1|xDbits(C)
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LWE — Rearranging Notation

b=3xA+T7 /New secret § € Zi+1
s § -1
<e A . ~ 4
q New matrix
— / (n+1)><m 7
+ n A €EZ b
q'\ S
— /B = T_f
Small noise € ZZ" e Zm

nil < ag;a < 1

118

WE: A" = (A]|b) ~, UEI"“)X’"
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Regev PKE — Pictorially

public key small noise

encodmg of bit x

e 7 Eg y=Xx- [q/ZJ-(O,...,O,—l)}

@ SAPIENZA
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The GSW Scheme

S e 7N = Z7zn><n-[logq]
A £
~ Enc(4,x;R) = [AXR + x - G]
public key 4
€ ngm_ ﬁ) — Lx.G

lello = IM X Rl|lo < (aq)  m=n-m
Invariant: s X C =e+x:-SXG

Dec(3,C) =5x C x G~1((0,...,0,—1q/2)))
=exG (- )+x-5xGxG1(0,...,0,—g/2)
=eéxG () +1q/2] - x =z

Output: 0 & |z]| < q/4
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The GSW Scheme — Homomorphism
Invariant: S X C =e+x-SXG
Conue = C1 X G71(Cy)

SXCXGHC) =@ +x;-5%xG) - G7L(Cy)
=&, XG HC) +x;-5XGXxGC))

=e; X G 1C,) +x;-5%xC,

e. X G HC) +x-(6;,+x,-5X G)

= (el x G~1(C,) +x - e,) + X%, SXG

= €mult + X1X3 - S XG

lemuitlloc < N - ll€1llo + ll€2llee < (N + 1) - max{llé, |l [le-]]3
i BRNRENZS




The GSW Scheme — Correctness

leoutlleo < (N + D)™ m - aq

p N
Correctness:
- n-m-(N+1)"1 <q/4
e b -
o
o
- -
leirillee = (N + D&l
leinllo <Mm-n=m-agq
122 Lattice-based Cryptography — Daniele Venturi "\9/" %ﬁzﬁmﬁ




The GSW Scheme — Semantic Security

e Similar as in the proof of Regev PKE
* Using LWE we move to a mental experiment with 4 «¢ Zg™™

* Hence, by the leftover hash lemma, with m = ©(nlog g), the
statistical distance between (4, A4 X ) and uniform is negligible

* By a hybrid argument over the columns of R, it follows that the
statistical distance between (4,4 X R) and uniform is also negligible

* Thus, the ciphertext statistically hides the plaintext

123
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The GSW Scheme — Parameters

» Correctness requiresn-m - (N + 1)1 < g/4

* Security requiresm = O(nlogg),e.e.m=1+ 2n(2 +logq)

» Hardness of LWE requires g < 2™ fore < 1
e Substituting we get g > (2nlogq)®™™*3

* And thus n® > (7 + 3)(logn + loglog g + 1) which for large 7, n
yields n® > 2tlogn

* So we set n = max(4, [41/elogT€]), ¢ = [2™], m = O(n1*€), and
a=n/g=n-2""

* Hence, the size of ciphertexts is polynomial in A4, T thus yielding
a weakly-compact FHE

124
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Increasing the Homomorphic Capacity

* The only way to increase the homomorphic capacity of GSW is
to pick larger parameters

* This dependence can be broken using a trick by Gentry
* Main idea: Do a few operations, then switch keys

pks, sk ‘
plusk ()

~b
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How to Switch Keys

126

-

\_

X

/ Dec(sk,) \

C

~N

J

Decryption circuit

4 5 )

/ Dec(:,c) \E D.()

_ sk y
Dual view

Eval,,, (D, aux) = Eval,,, (Dc, Enc,, (sk))
= Enc,;/(D.(sk))
— Encpk,(x)

~Nb
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Bootstrappable Encryption

* Let W (4, 7) be the set of all fresh and evaluated ciphertexts
w.r.t. circuits class C;
* For all possible keys and all possible inputs to the circuit

* Given ¢q, c; € Wi(4,7), let D¢, ., (sk) be the augmented
decryption circuit, defined by

D:, ¢, (sk) = NAND(D,, (sk), D, (sk))

* We say that I1 is bootstrappable if its homomorphic capacity
includes all the augmented decryption circuits

*le,3tst. VA €N, cq,c; € Wn(4,7(1)), we have D¢ ., € Cr(p

N
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Bootstrapping Theorem

Theorem. Any bootstrappable homomorphic encryption
scheme can be transformed into a compact somewhat
homomorphic encryption scheme

* One can show that the GSW scheme is bootstrappable

* Let I be the bootstrappable scheme; construct I1’ as follows:
. KGen (14, 1%): For each i € [0,d], run (pkl,sk ) «4 KGen(1%, 17%)
and ¢; L5 Enc(pklﬂ,sk ), and output sk’ (sko, ., Sky), pk’ =

(Pko;Cp s Ca—1,Pkq)
* Enc’(pk’, x): Return (0, c) where ¢ «¢ Enc(pkg, x)

* Dec'(sk’,c’): Return Dec(sk;, c) where ¢’ = (i, c)

hd OAPIENZA
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Bootstrapping Theorem

« Eval’ (pk’,T, ¢): Go over the circuit in topological order from inputs to
outputs; for every gate at level i with inputs (i — 1,¢;y) and (i — 1, ¢y),
run ¢’ «¢ Eval(pk;, D¢, .., ¢;_,) and use (i,c") as the gate output

* To prove correctness, we proceed by induction

* The auxiliary ciphertexts ¢;_,, and fresh ciphertexts are correct

* Assume that at level i two ciphertexts ¢4, ¢, € W (4, T) are correct

* Let ¢’ «¢ Eval(pk;, D¢, ., ¢;_1); as I1is bootstrappable:

Dec(sk;,c') = D¢, c,(ski_1)
= NAND (D, (sk;_1), D, (sk;_1)) = NAND (xy, x;)

* Moreover, ¢’ € Wr (4, 1)

Nk
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Bootstrapping Theorem

* To prove semantic security, we use a hybrid argument

* In hybrid Hy (4, b) we modify key generation by picking all

ciphertexts ¢; such that i > k as fresh encryptions of 0

* Note that H; (A, b) is just the semantic security game for IT’

* By semantic security of I1, H,(4,b) =, Hi,_1(A, b) for each k € |0, d]
and b € {0,1}

* Finally, Hy (4, b) never uses sk, and thus by semantic security of II no

PPT adversary can distinguish between Hy(4,0) and Hy(4, 1) with
better than negligible probability
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Circular Security

* The above scheme is compact, but not fully homomorphic, as
we need a pair of keys for each level in the circuit

* A natural idea is to use a single pair (pk, sk) and include in pk’
a ciphertext ¢* <4 Enc(pk, sk)
e Correctness still holds for this variant, but the reduction to semantic
security breaks
* Workaround: Assume circular security
* l.e., Enc(pk, 0) =, Enc(pk, 1) even given ¢* «¢ Enc(pk, sk)

* GSW is conjectured to have this property, but no proof of this fact is
currently known
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Fully-Homomorphic Commitments

elet A € ZZXW andC=A-R+x-GforReZVW*™ and x € L
* Think of € as a commitment to x w.r.t. A under randomness R

 Homomorphic operations:
G-—C,=A(—R)+(1—x,)-G
C_|_ =C1+Cz =A°(R1+R2)+(X1 +x2)‘G
Cx=0C, G 'C,]
— A * (Rl * G_l[Cz]) + le * G_l[A * Rz + xz * G])
A * (Rl * G_l[Cz] + x1 * Rz) + xlsz

* Can be extended to vectors x € Z
C=A4-R+x'QG
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Proof Systems

L = . ,V - =1
{(x:30,V(x,0) = 1} Accept/Reject

* A proof system  for membership in L is an algorithm V s.t.
* Completeness: For all x € L, then 3¢ for which V(x,{) =1
* Soundness: For all x ¢ L, then V{ we have V(x,{) =0

* Note the fact that a proof exists might not be efficiently
verifiable

* |.e., we would like the verifier to run in polynomial time
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NP Proof Systems

L = . ,V - =1
{(x:30,V(x,{) = 13 Accept/Reject

* An NP proof system m for membership in L is an algorithm V s.t.
* Completeness: For all x € L, then 3¢ for which V(x,{) =1
* Soundness: For all x ¢ L, then V{ we have V(x,{) =0
* Efficiency: For all x, we have that V(x, {) halts after poly(]x|) steps

* Note the running time is measured in terms of | x|
* Necessarily, |{| = poly(|x])
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Examples

» Boolean satisfiability: SAT = {¢(-): 3w € {0,1}4, p(w) = 1}
 Complete: Every L € NP reduces to SAT
» Unstructured: Decidable in time e
* Linear equations: LIN = {(4,b): 3w, A -w = b}
e Structured: Decidable in time 0(1%373) = poly(})
e Quadratic residuosity: QR,, = {x: 3w, x = w?mod n}
* Structured: QR,, is a subgroup of Z,
* Yet, when n = p - g with [p| = |g| = A finding square roots is
equivalent to factoring the modulus (time e0(A1/%) on average)
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The Class P

. € P if there is a polynomial-time A such that
L={x:A(x) =1}
* . € BPP: A is PPT and errs with probability < 1/3

[ € coNP if and only if its complement L € NP

~
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Proving Non-Membership

* How can we prove non-membership?
* Showing ¢ & SAT requires to check that Vi € [2’1], d(w;) =0
* Showing x € QR,, requires to check that Vi € [@(n)],x Z w mod n

* SO, a haive proof is exponentially large

* We can avoid this if we allow the proof to use

* Randomness (tolerate "error”
* Interaction (add a computationally unbounded "prover")

 S. Goldwasser, S. Micali, C. Rackoff. "The Knowledge Complexity of
Interactive Proof-Systems." STOC 1985

=3 SAPIENZA
QLI  UNIVERSITA DI ROMA

137



Interactive Proof for QR,,

Z
, . f(oifz e QR, < <
b'(z) = {1 ifz & OR, % b’

 Completeness:
* Wehavex € QR,, > y* € QR, \ xy*¢& QR,
* Soundness:
* We have x € QR,, = y%? € QR, \ xy*€ QR,,
* Hence, all even unbounded provers P* succeed w.p. 1/2
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Interactive Proof Systems

* An interactive proof system 7 for L consists of a PPT V and an
unbounded P such that

* Completeness: For all x € L, then P[{P,V(x)) = 1] = 2/3
* Soundness: For all x & L, for all P*, then P[(P*,V(x)) =1] < 1/3

* Completeness and soundness can be bounded by any ¢,s: N —
|0,1] as long as
* c(lx]) = 1/2 + 1/poly(|x|) and s(|x]) < 1/2 — 1/poly(|x|)
* So, poly(|x|) repetitions yield s(|x]) — c(Jx|) = 1 — 2~ Poly(xD
* The class NP has c¢(|x|) = 1 and s(|x|) = 0, whereas the class BPP
requires no interaction
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The Power of IP

* We have shown that QR,, € IP
* NP proof for QR,, not self-evident
* This suggests that maybe NP € [P
e Turns out that SAT € IP, and thus coNP < IP
e In fact, P*P € IP = PSPACE
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What Does a Proof Reveal?

* Consider the following non-interactive proof for QR,

x € QR, Check x = w?mod n
* Generating { requires exponential time
* Verifying the proof requires 0(1%) time

* The verifier got something for free from seeing ¢
* Recall that finding w is equivalent to factoring the modulus n
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How to Define Zero-Knowledge?

* Intuitively, we might want that
* The verifier does not learn w
* The verifier does not learn any symbol of w
* The verifier does not learn any information about w
* The verifier does not learn anything (beyond x € L)

* When does the verifier learn something?

* If at the end of the protocol he can compute something he could not
compute without running the protocol

* Zero-knowledge: Whatever can be computed while running the
protocol could have been computed without doing so
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Honest-Verifier Zero-Knowledge

* Hence, we must require that Vx € L the verifier's view can be
efficiently simulated given just x (but not w)
* In other words, the verifier learns whether x € L but nothing more

 Whatever he could compute via the protocol he could have computed
by talking to himself (i.e., by running the simulator)

* An interactive proof system m = (P, V) for L is perfect honest-
verifier zero-knowledge (HVZK) if 3 PPT & such that Vx € L:

S(x) = (P(x,w), V(x))

 Sanity check: Previous proof is not HVZK
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Perfect Zero-Knowledge

* An interactive proof system m = (P, V) for L is perfect zero-
knowledge (PZK) if V PPTV* A PPT S s.t. Vx € L,Vz € {0,1}":

SV (x,2) = (P(x,w),V*(x,2))

* This is also known as black-box zero-knowledge
* Simulator runs in time poly(|x]|), but sometimes we will consider also
simulation in expected polynomial time
e Auxiliary input captures context
e Other protocol executions
* A-priori information (in particular about w)
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Can SAT be Proved in ZK?

* Why should we care?
* Because it is an NP-complete language
* If SAT € NP, thenevery L € NP is provable in zero-knowledge

Theorem: If SAT € PZK, then the polynomial-time
hierarchy collapses to the second level

* Natural idea: Relax the definition of zero-knowledge

e Statistical zero-knowledge (SZK): Simulator's output statistically close
to the verifier's view (above theorem even holds for SZK)

* Computational zero-knowledge (CZK): Simulator's output
computationally close to the verifier's view (recall A = |x]|)

=3 SAPIENZA
QLI  UNIVERSITA DI ROMA

145



NP is in CZK

* One can show the following fundamental result:

Theorem: If OWFs exist, then NP € CZK.

* In fact, we will show that HAM <€ CZK, where HAM is the
language of all graphs with an Hamiltonian cycle

* This problem is NP complete
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Zero-Knowledge for NP from FHE

(pk, sk) <4 KGen(1") pk, ¢
¢ «¢ Enc(pk,w) , ¢’ «¢ Eval(pk, Ty, )
d = Dec(sk, c") =

d

X, W

e Let L € NP with relation R
* Thismeans L = {x:3ws.t. R(x,w) = 1}
* Consider the circuit I'p (W) = R(x, w)

* The above protocol is not sound!
e Can you say why?
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Adding Soundness

(pk, sk) <5 KGen(1%) ok, B s 101 |

c —¢ Enc(pk, W) ) . Eval(pk, FR,x:E) it =1

d = Dec(sk, ¢ ¢ * |Enc(pk, 0) if =0
d Check f =d

X, W

* Now soundness follows by the fact that, for x & L, both
ciphertexts will be encryptions of zero

* Since those are indistinguishable, Alice can cheat with probability 1/2

* However, we need to ensure that pk, ¢ are well formed
* Alice generates pk4, pk, and Bob asks her to "open" one at random

* With the other key Alice encrypts w{, w, s.t. w; @ w, = w, and Bob
asks her to "open" one of the encryptions at random
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Adding Zero-Knowledge

* The previous protocol is only honest-verifier zero-knowledge

* In fact, malicious Bob could send to Alice the first ciphertext in the
vector ¢, so that d reveals the first bit of w

* This can be fixed using commitments
* Namely, Alice sends a commitment to d

* Hence, Bob must reveal his randomness in order to prove he run the
computation as needed

* Finally, Alice opens the commitment revealing d

=3 SAPIENZA
QLI  UNIVERSITA DI ROMA

149



Non-Interactive Proofs

* So far, we have seen how to obtain zero-knowledge proofs
relying on randomness and interaction

* Can we remove interaction?
* |.e., Alice sends a single message { to Bob to prove that x € L

* As we shall see, non-interactive zero-knowledge (NIZK) proofs

have exciting applications
* E.g., post a proof on a website, or on a blockchain
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A Negative Result

Theorem: If L admits a NIZK proof (P, V), then L € BPP.

* Consider the following PPT machine deciding L:

* Given x, run the simulator to obtain { «¢ S(x)
* Output the same as V(x, ()

* Completeness: If x € L, the zero-knowledge property implies
that a simulated proof should be accepting

* Soundness: If x & L, the verifier V rejects all proofs with high
probability (in particular a simulated proof)
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Common Reference String Model

* Main idea: Assume a trusted setup
* Typically a common reference string (CRS) accessible to all parties
* Sometimes just a uniformly random string
* Need a trusted party to generate the CRS in a reliable manner

* Formally, a non-interactive proof system is a tuple (G, P, V)

* G(1%): Outputs a CRS w
* P(w,x,w): Outputs a proof ¢
* V(w, x, {): Outputs a decision bit
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Properties of NIZKs
R

* Completeness: Vx € L,
P|V(w,x, ) = 1:w <4 G(17),{ <4 P(w,x,w)| =1
* Soundness: Vx & L, VP~,
P|V(w,x, ) = 1:w <4 G(1%),{ <4 P*(w,x)| € negl(1)
* Zero-Knowledge: 3 PPT § = (§y, 1) s.t. Vx € L,
{w,8,(1,%): (w,7) <5 So(1*)} =, {w, P(w, x,Ww): w <4 G(17)}
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But Do NIZKs Exist?

* In the random oracle model:

e A. Fiat, A. Shamir. "How to Prove Yourself: Practical Solutions to
|dentification and Signatures Problems." CRYPTO 1986

* Assuming Factoring

e U. Feige, D. Lapidot, A. Shamir. "Multiple Non-Interactive Zero-
Knowledge Proofs based on a Single Random String." FOCS 1990

* In bilinear groups:

* J. Groth, A. Sahai. "Efficient Non-Interactive Proof Systems for Bilinear
Groups." SIAM Journal of Computing 41(5), 2012

* Assuming LWE
* C. Peikert, S. Shiehian. "Non-Interactive Zero-Knowledge for NP from
(Plain) LWE."
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The Fiat-Shamir Transform

Random Oracle H

X, W 14

* Given public-coin 3-round protocol (P, V) we define its FS-
collapse (Prg, Vrg) as depicted above
* Prg obtains a,y from P, using f = H(x, a)
* Vpg checks that V accepts (a, 5,y), with f = H(x, a)

NI
68 SAPTENZA
m‘l,,,_ W&/  UNIVERSITA DI ROMA

155



The Fiat-Shamir Transform

Theorem: Assuming (P, V) is a 3-round public-coin
argument for L with negligible soundness and HVZK, its FS-
collapse (Prg, Vig) is a NIZK argument for L in the ROM

* Remark: Arguments versus proofs

* An argument has only computational (rather than statistical)
soundness

 Actually, the FS-collapse is even a NIZK-PoK in the ROM

e S. Faust, G. A. Marson, M. Kholweiss, D. Venturi. "On the Non-
Malleability of the Fiat-Shamir Transform." Indocrypt 2012
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Analysis in the ROM

* Suppose Ix & L and some Prg producing an accepting proof
* Assume Prs makes p € poly(4) queries to the RO, and makes Vgg
accept with probability e(A)
* We will construct P* breaking soundness w.p. poly(e, 1/p)

* We rely on the following useful fact:

* Let X, Y be correlated random variables such that P[E(X,Y)] = €
where E is some event

* Then for at least an €/2 fraction of x's, P|E(x,Y)]| = €/2
* Assume not, and call good an x for which the statement holds

P|E(X,Y)] = P[Good] - PI[E(X,Y)|Good] + P[Bad] - PI[E(X,Y)|Bad] <€/2:-1+1:€¢/2
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Analysis in the ROM

* Let (@, y) be the proof output by Prg
* Denote by (qy, ..., qp) the RO queries asked by Pgq

* Each query is a pair (x;, a;)
* Wlog. assume all queries are distinct and 3i* € |p] s.t.q; = (a, x)

Forking Lemma. For an €/2p fraction of

(q1, ..., q;*) it holds that Prc wins w.p. €/2p
conditioned on q; = (a,x) and q; = q; (Vi < i)

* Proof: 3i* s.t. Pgg wins w.p. €/p conditioned on q;+ = (a, x)
* As otherwise Prg does not have advantage = €
* The statement then follows directly by the useful fact
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Analysis in the ROM

i Beir <4 {0,1}°
P Bi lgii* - :B a
” (@) p
14

X &L

* The prover P* acts as follows
* Run Prs and answer all RO queries q; with i < i* at random
* Upon input the query g;+ with a € g;+, forward a to V and receive
* Use [ as the answer to RO query q;-
* Upon (a',y), hopethata' = «
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Analysis in the ROM

* By the forking lemma, we get that w.p. €/2p over the choice of
(94, ---, q;*), Pps Wins w.p. €/2p conditionedon a’ = «
* Hence:

2
€
P[P* wins| = | —
7 wins] > (5
e Since this is non-negligible, then soundness follows

* [t remains to prove zero-knowledge

* But we did not yet defined what zero-knowledge in the ROM means
* Typically, the simulator is allowed to program the random oracle

160
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Analysis in the ROM

Abort if cannot ” q; Can make RO
program the RO | 2 ' queries!
i
Bi <5 {0,1}°
((X, :8; ]/) < S(X) ((1, )/)
H(x,a) =

* Let § be the HVZK simulator for the public-coin protocol

* The NIZK simulator Sgq:
* Answer RO query q; = (a;, x;) with random [;
* Uponinputx € L, run (@, B,y) <4 S(x) and program H(x,a) =
* Abort if (x, @) was previously queried to the RO

* Non-triviality: Need that « is unpredictable!

161
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On Adaptive Soundness

* Qur definition of soundness for NIZKs is non-adaptive
* In particular, the choice of x € L cannot depend on the CRS

* One can show that the Fiat-Shamir transform actually achieves
adaptive soundness

* Note that the FS-collapse defines f = H(x, «), i.e. we hash both
the statement x and the commitment «a
* Sometimes, a variant where § = H(a) is also used

* However, this might not be adaptively sound leading to actual attacks
in some applications

* D. Bernhard, O. Pereira, B. Warinschi. "How not to Prove Yourself:
Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios."
ASIACRYPT 2012
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Generalization to Multi-Round Protocols

* The FS transform can be generalized to constant-round public-
coin arguments

* The prover Pgg hashes the current view (x, a4, ..., @;_1) in order to
obtain the i-th message [; from the verifier V

* A non-interactive proof now consists of { = (a1, ..., Ay)

* This is also known to be tight

* There exists a non-constant-round public-coin argument for which the
FS-collapse is not sound (even in the ROM)

e Consider any constant-round public-coin argument with constant
soundness, and amplify soundness by sequential repetition

* This yields negligible soundness in non-constant rounds
e But the reduction does not yield negligible soundness anymore
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Fiat-Shamir without Random Oracles?

* Natural question: Can we instantiate the random oracle using an
explicit hash family?

* Understand which properties of a random oracle are necessary for
proving security of the Fiat-Shamir transform in the CRS model

* Unfortunately, this is not possible for all 3-round public-coin
proofs/arguments

* S. Goldwasser, Y. T. Kalai. "On the (in)security of the Fiat-Shamir
paradigm."” FOCS 2003

* N. Bitansky, D. Dachman-Soled, S. Garg, A. Jain, Y. T. Kalai, A. Lopez-Alt,
D. Wichs. "Why Fiat-Shamir for Proofs Lacks a Proof." TCC 2013

* Still possible for some specific class of protocols
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Correlation Intractability

e Let H = {h:{0,1}°> {0,1}*} be a family of hash functions
* Consider any relation R € {0,1}°x {0,1}*

* We say that H is R-correlation-intractable if for all PPT A.:
P[(x, h(x)) € R: h —¢ H; x «¢ A(h)] € negl(1)
* A relation R is said to be p-sparse, if Vx € {0,1}":
P[(x,y) € Ry <5 {0,1}"] < p(D)

* Moreover, the relation R is sparse if p(A1) € negl(A)
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Fiat-Shamir via Correlation Intractability

Theorem: Assuming T = (P, V) is a 3-round public-coin
proof for L with soundness and HVZK, its FS-collapse
(Pgs, Vrs) using a Cl hash family H is a NIZK argument for L

e Consider the relation:

Ry ={((a,x),B):Iys.t.x &L /\V(x, (a,ﬁ,y)) =1}

* It is not hard to show that statistical soundness (with negligible
soundness error) implies that R, is sparse

* But a cheating Pgg finds a” s.t. ((x,a”), h(x,a”)) € Ry, violating Cl
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Fiat-Shamir via Correlation Intractability

e Zero-knowledge additionally requires that H is programmable

* Call H 1-universal if for all x € {0,1}%,y € {0,1}¢, the probability over
the choice of h € H that h(x) = y equals 27¢

 H is programmable if it is 1-universal and further there exists an
efficient algorithm Samp (1%, x, y) that samples from the conditional
distribution h «<¢ H such that h(x) =y
* We can assume programmability wlog.
» Sample h «¢ H and a random string u «g {0,1}
* OQutput h(x) D u
« Algorithm Samp (1%, x, y) picks h «—¢ H and outputs (h, h(x) D y)

N
& 3 SAPIENZA
QUSY  UNIVERSITA DI ROMA

167



Fiat-Shamir via Correlation Intractability

* Assuming obfuscation:

* Y. T. Kalai, G. N. Rothblum, R. D. Rothblum. "From Obfuscation to the
security of Fiat-Shamir for Proofs." CRYPTO 17

* Assuming optimal KDM-secure encryption:

* R. Canetti, Y. Chen, L. Reyzin, R. D. Rothblum. "Fiat-Shamir and CI from
Strong KDM-Secure Encryption” EUROCRYPT 18

* Assuming circularly secure FHE:

* R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum, R. D.
Rothblum, D. Wichs. "Fiat-Shamir: From Theory to Practice.” STOC 19

* Assuming (plain) LWE:

e C.Peikert, S. Shiehian. "Noninteractive Zero Knowledge from (Plain)
Learning With Errors.”" CRYPTO 19
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