Lattice-based Cryptography

Cryptography Course

Prof. Daniele Venturi Dipartimento di Informatica

Academic Year 2024/2025

The Quantum Threat

- An algorithm by Shor [Sho94] solves the factoring and discrete logarithm problems in **polynomial-time** on a **quantum** machine
	- The algorithm requires an **ideal** quantum Turing machine
	- Factoring a 1024-bit integer requires **2050** logical **qubits** and a quantum circuit with **billions** of quantum gates
	- Despite recent progress on quantum computation, current implementations can only factor **tiny numbers** (e.g., 15 and 21)
- Nevertheless, the NIST started in 2017 a process to solicit, evaluate, and standardize **quantum-resistant** cryptography
	- The selected algorithms were announced in 2022
	- Most of these algorithms are based on **lattices**

What's the Rush?

- Big quantum computers won't be available for **many years**
	- If **ever**…
	- Can't we just wait?
- Better safe than sorry
	- **Harvesting attacks:** Store today's keys/ciphertexts to break later
	- **Rewrite history:** Forge signatures for old keys
	- Deploying new cryptography **at scale** requires 10+ years

Lattices

What is a Lattice?

- Simply, a set of points in a **high-dimensional** space
	- Arranged **periodically**
- Formally, take *n* linearly independent vectors $(b_1, ..., b_n)$ in \mathbb{R}^n and consider all **integer** combinations

$$
\mathcal{L} = \{a_1b_1 + \dots + a_nb_n : a_1, \dots, a_n \in \mathbb{Z}\}
$$

- We call $(b_1, ..., b_n)$ a **basis**
- The **same lattice** may have **different** equivalent **basis**
	- Even if base vectors are **long**, there are **short vectors** in the lattice

History

- **Geometric** objects with rich mathematical structure
- Considerable **mathematical interest** starting from Gauss (1801), Hermite (1850), and Minkowski (1896)

• Recently, many **interesting applications** (cryptanalysis, factoring rational polynomials, finding integer relations, …)

Equivalent Bases

- Sometimes, we write $\mathcal{L}(\mathbf{B})$ where \mathbf{B} is the matrix whose columns are $(b_1, ..., b_n)$
	- One can also define a lattice as a **discrete additive subgroup** of ℝ

• **Equivalent** bases:

- Permute vectors (i.e., $\bm{b}_i \leftrightarrow \bm{b}_j$)
- Negate vectors (i.e., $\mathbf{b}_i \leftarrow (-\mathbf{b}_i)$)
- Add integer multiple of another vector (i.e., $\boldsymbol{b}_i \leftarrow \boldsymbol{b}_i + k \cdot \boldsymbol{b}_j, k \in \mathbb{Z}$)
- **Theorem:** Two bases B_1 , B_2 are **equivalent** iff $B_1 = B_2 \cdot U$ • *U* unimodular (i.e., integer matrix with $det(U) = \pm 1$)

Equivalent Bases

- Let $B_1 = B_2 \cdot U$
	- If \bm{U} is unimodular, so is \bm{U}^{-1} and $\bm{B}_2 = \bm{B}_1 \cdot \bm{U}^{-1}$
	- Hence, $\mathcal{L}(\mathbf{B}_1) \subseteq \mathcal{L}(\mathbf{B}_2)$ and $\mathcal{L}(\mathbf{B}_2) \subseteq \mathcal{L}(\mathbf{B}_1)$ or $\mathcal{L}(\mathbf{B}_1) = \mathcal{L}(\mathbf{B}_2)$
- Let $B_1 = B_2 \cdot W$ and $B_2 = B_1 \cdot V$ for **integer matrices** V, W
	- Hence, $B_1 = B_1 \cdot V \cdot W$ or $B_1 \cdot (I V \cdot W) = 0$
	- Since the vectors in B_1 are **linearly independent**, $I V \cdot W = 0$
	- Thus, $V \cdot W = I$ and $\det(V) \cdot \det(W) = \det(V \cdot W) = 1$
	- Since V, W are **integer matrices** $\det(V)$, $\det(W) \in \mathbb{Z}$ and $\det(V) =$ $\det(W) = +1$

The Fundamental Region

- The **fundamental region** of a lattice corresponds to a **periodic tiling** of \mathbb{R}^n by copies of some body
	- For instance, [0,1) is a fundamental region of the **integer lattice** ℤ, as every $x \in \mathbb{R}$ is in the **unique translate** $|x| + [0,1)$

- A lattice base yields a fundamental region called the **fundamental parallelepiped** $\mathcal{P}(B) = B \cdot [0,1)^n = \{ \}$ $i=1$ \boldsymbol{n} $c_i \cdot \mathbf{b}_i$: $c_i \in [0,1)$
- Useful for measuring **arbitrary** points **relative to a lattice**
	- $P(B)$ is **half-open** and $v + P(B)$ for $v \in L(B)$ forms a **tiling** of \mathbb{R}^n
	- For **every** $x \in \mathbb{R}^n$, there is a **unique** $v \in \mathcal{L}(B)$ s.t. $x \in (v + \mathcal{P}(B))$

Determinant

- The **determinant** of a lattice $\mathcal{L}(B)$ is $\det(\mathcal{L}) = |\det(B)|$
- Note that this is well defined, as for every **unilateral**

 $|\det(B \cdot U)| = |\det(B) \cdot \det(U)| = |\det(B)|$

- The determinant corresponds to the **volume** of the **fundamental parallelepiped**
	- The determinant is the **reciprocal** of the **density** (i.e., **big** determinant means **sparse** lattice)
	- Moreover, the volume is the **same** for **every** fundamental region

Successive Minima

- Let $\lambda_1(\mathcal{L})$ be the length of the **shortest non-zero** vector in a lattice L
	- Usually, in terms of the **Euclidean** norm
	- The shortest vector is **never unique**, as for every $v \in \mathcal{L}$ also $-v \in \mathcal{L}$
- More generally, $\lambda_k(\mathcal{L})$ denotes the **radius** of the **ball** containing **linearly independent** vectors
	- For $k = n$ the ball contains a basis of the entire space

Minkowski's Theorem

- Lemma (Blichfeld): For any lattice $\mathcal L$ and set $\mathcal S$ with $vol(\mathcal S) >$ det(*L*), ∃ distinct z_1 , z_2 ∈ *S* s.t. $z_1 - z_2$ ∈ *L*
- Consider $S_x = S \cap (x + P(B))$ with $x \in L(B)$
	- So, $\mathcal{S} = \bigcup_{x \in \mathcal{L}(B)} \mathcal{S}_x$ and $\text{vol}(\mathcal{S}) = \sum_{x \in \mathcal{L}(B)} \text{vol}(\mathcal{S}_x)$
	- For **each** $x \in \mathcal{L}(B)$, $S_x x = (S x) \cap \mathcal{P}(B) \subseteq \mathcal{P}(B)$
	- Then, $\mathrm{vol}\big(\mathcal{P}(B)\big)<\mathrm{vol}(\mathcal{S})=\sum_{x\in\mathcal{L}(B)}\mathrm{vol}(\mathcal{S}_x)=\sum_{x\in\mathcal{L}(B)}\mathrm{vol}(\mathcal{S}_x-\bm{x})$
- There are **distinct** $x, y \in L(B)$ s.t. $(S_x x) \cap (S_y y) \neq \emptyset$
	- Take $z \in (S_x x) \cap (S_y y)$, so that $z_1 = z + x \in S_x \subseteq S$ and $z_2 = z$ $z + y \in S_{\nu} \subseteq S$

• Hence,
$$
z_1 - z_2 = x - y \in \mathcal{L}(B)
$$

Minkowski's Theorem

• **Theorem (Minkowski):** For any lattice \mathcal{L} and **convex**, zero**symmetric**, set S with $vol(S) > 2^n det(L)$, there exists a non**zero** lattice point in S

- Let $S/2 = \{x : 2x \in S\}$ with $vol(S/2) = 2^{-n}$. $vol(S) > det(L)$
- Take $z_1, z_2 \in S/2$; by **Blichfeld** $z_1 z_2 \in L$
- Now, $2z_1$, $-2z_2 \in S$ and $z_1-z_2=$ $2z_1 - 2z_2$ 2 $\in \mathcal{S}$
- **Corollary:** For every \mathcal{L} , we have that $\lambda_1(\mathcal{L}) \leq \sqrt{n} \cdot \det(\mathcal{L})^{1/n}$
	- Let $\ell = \min_{\ell \in \mathbb{N}}$ $x \in \mathcal{L} \setminus \mathbf{0}$ $\|x\|_\infty$ and assume $\ell > \det(\mathcal{L})^{1/n}$
	- The hypercube $C = \{x : ||x||_{\infty} < \ell\}$ is **convex**, symmetric and has volume $vol(C) = (2\ell)^n > 2^n det(L)$

Hard Problems

- **SVP**_{v}: Given **B**, find vector in $\mathcal{L}(B)$ with length $\leq \gamma \cdot \lambda_1(\mathcal{L}(B))$
- GapSVP_{v}: Given B, decide if $\lambda_1(\mathcal{L}(B))$ is ≤ 1 or $\geq \gamma$
- SIVP_{γ} : Given B, find *n* linearly independent vectors in $\mathcal{L}(B)$ with length $\leq \gamma \cdot \lambda_n(\mathcal{L}(B))$
- CVP_{ν}: Given B and ν , find a lattice point that is at most γ times **farther** than the **closest** lattice point
	- It is known that $SVP_{\nu} \leq CVP_{\nu}$
- **BDD**: Find **closest** lattice point, given that v is **already close**

General Hardness Results

- Exact algorithms take time 2^n
- **Polynomial-time** algorithm for gap $\gamma = 2^{n \log \log n / \log n}$
- No better **quantum** algorithm known
- NP **hardness** for gap $\gamma = n^{c/\log \log n}$
	- For cryptographic applications, we need $\gamma = \Omega(n)$
	- Not believed to be NP-hard for $\gamma = \sqrt{n}$

Small Integer Solution Problem

- Fix **dimension** n , and **modulus** q (e.g., $q \approx n^2$)
- Given random vectors $a_1, ..., a_m \in \mathbb{Z}_q^n$, find non-zero small $z_1, ..., z_m \in \mathbb{Z}$ such that

- Observations:
	- Trivial if the size of the z_i 's is **not restricted** (Gaussian elimination)
	- Equivalently, find non-zero short $z \in \mathbb{Z}^m$ s.t. $A \cdot z = \mathbf{0} \in \mathbb{Z}_q^n$

SIS as a Lattice Problem

Find **short** ($||z|| \leq \beta \ll q$) solutions for **random**

• **Theorem (Ajt96).** For any n-dimensional lattice, it holds that:

GapSVP $_{\beta\sqrt{n}}$, SIVP $_{\beta\sqrt{n}} \leq$ SIS $_{\beta}$

 $(q, 0)$ $(0,0)$

 $(0, q)$

• Also true for any lattice **coset** $\mathcal{L}_{\mathbf{u}}^{\perp}(A) = \{ \mathbf{z} \in \mathbb{Z}^m : A \cdot \mathbf{z} = \mathbf{u} \} = \mathbf{u} +$ $\mathcal{L}^{\perp}(A)$ (i.e., **inhomogenuous** SIS)

Learning with Errors [Reg05]

- Dimension *n*, modulus $q > 2$, noise distribution χ
- Find $s \in \mathbb{Z}_q^n$ given m noisy random inner product equations

- Trivial **without** noise
- **Gaussian** distribution over \mathbb{Z} , with std deviation $\geq \sqrt{n}$ and $\ll q$
	- Rate parameter $\alpha \ll 1$
- Need $\alpha q > \sqrt{n}$ for **worst-case hardness** and because there is an $exp((\alpha q)^2)$ -time attack

Decisional LWE

- **Distinguish** the matrix \vec{A} and the vector \vec{b} from random (\vec{A}, \vec{b})
	- Decisional LWE is **equivalent** to Search LWE

LWE as a Lattice Problem

LWE is BDD on $\mathcal{L}(A)$: Given $b^{\textrm t} \approx z^{\textrm t} = s^{\textrm t} \cdot A$ find z

• **Theorem (Reg05,Pei10).** For **any** dimensional lattice, it holds that:

$\text{GapSVP}_{\alpha n}$, $\text{SIVP}_{\alpha n} \leq \text{LWE}$

- **Quantum** reduction for **broad** parameters [Reg05]
- **Classical** reduction for **restricted** parameters (e.g., $q \approx 2^n$) [Pei10]

 $(q, 0)$

 $(0, q)$

 $(0,0)$

Hardness of LWE

• More formally define the **LWE distribution** as

LWE[n, m, q,
$$
\chi
$$
] = $\{(A, b):$
 $e \leftarrow \chi^m$; $b^{\text{t}} = [s^{\text{t}} \cdot A + e^{\text{t}}]_q\}$

- Parameters:
	- $\alpha = 1/\mathrm{poly}(n)$ or $\alpha = 2^{-n^{\epsilon}}$ (**stronger** assumption as α decreases)
	- $m = \Theta(n \log q)$ or $m = \text{poly}(n)$ (**stronger** assumption as m **increases**)
	- $q = 2^{n^{\epsilon}}$ or $q = \text{poly}(n)$ (stronger assumption as q increases)
	- Noise distribution χ such that $\mathbb{P}[|e| > \alpha q : e \leftarrow \chi] \leq \text{negl}(n)$

Simple Properties

- Check a **candidate** solution $\boldsymbol{t} \in \mathbb{Z}_q^n$
	- Test if all the elements in $\mathbf{b} \langle \mathbf{t}, \mathbf{a} \rangle$ are small
	- If $t \neq s$, then $b \langle t, a \rangle = \langle s t, a \rangle + e$ is well-spread in \mathbb{Z}_a
- **Shift** the secret by any $\boldsymbol{r} \in \mathbb{Z}_q^n$
	- Given $(a, b = \langle s, a \rangle + e)$, output $(a, b' = b + \langle r, a \rangle = \langle s + r, a \rangle + e)$
	- Using **random** yields a random **self-reduction**
	- **Amplification** of success probabilities (i.e., **non-negligible** success probability for **random** $s \in \mathbb{Z}_q^n$ implies **overwhelming** success probability for **every** $s \in \mathbb{Z}_q^n$)
- **Multiple** secrets: $(a, b_1 = \langle s_1, a \rangle + e_1, ..., \langle s_t, a \rangle + e_t)$ indistinguishable from **random** $(a, b_1, ..., b_t)$

Search/Decision Equivalence

- Suppose we are given an oracle that **perfectly distinguishes** pairs $(a, b = \langle s, a \rangle + e)$ from random (a, b)
- To find s_1 , it suffices to **test** if $s_1 = 0$
	- Because we can **shift** s_1 by 0,1, ..., $q 1$ (assuming $q = \text{poly}(n)$)
	- Then we can do the same for $s_2, ..., s_n$
- The test: For each (a, b) , choose **random** $r \in \mathbb{Z}_q$ and invoke the oracle on pairs $(a' = a - (r, 0, ..., 0), b)$
- Note that $b = \langle s, a' \rangle + s_1 \cdot r + e$
	- If $s_1 = 0$, then $b = \langle s, a' \rangle + e$ and the oracle **accepts**
	- If $s_1 \neq 0$, then *b* is **uniform** (assuming q **prime**) and the oracle **rejects**

LWE with Short Secrets

- **Theorem [M01,ACPS09]:** LWE is **no easier** if the secret is drawn from the **error distribution** χ
	- Intuition: Finding *e* equivalent to finding *s* (i.e., $b^t e^t = s^t \cdot A$)
- Transformation from secret $\boldsymbol{s} \in \mathbb{Z}_q^n$ to secret $\boldsymbol{\bar{e}} \leftarrow \chi^n$
	- Draw samples to get $(\overline{A}, \overline{b}^t = s^t \cdot \overline{A} + \overline{e}^t)$ for square, invertible, \overline{A}
	- Transform each **additional** sample $(a, b = \langle s, a \rangle + e)$ to

$$
a'=-\overline{A}^{-1}\cdot a,b'=b+\langle \overline{b},a'\rangle=\langle \overline{e},a'\rangle+e
$$

• This maps $uniform(a, b)$ to $uniform(a', b')$, and thus works for **decision** LWE too

LWE vs SIS

- SIS has **many** valid solutions, whereas LWE only has **one**
- \cdot LWE \leq SIS
	- Given z such that $A \cdot z = 0$ from an SIS oracle, compute $b^t \cdot z$
	- Now, $b^t \cdot z = e^t \cdot z$ is small in the LWE case, whereas $b^t \cdot z$ is wellspread in case b^t is uniformly random
- What about the other direction?
	- Not known **in general**
	- True under **quantum reductions**

Efficiency of LWE/SIS

• Getting one random-looking scalar $b_i \in \mathbb{Z}_q$ requires an n dimensional **inner product** mod

- **Can amortize** each column a_i over **many secrets** s_j , but the latter still requires $\tilde{O}(n)$ work per scalar output
- Public keys are **rather large**, i.e. $> n²$ time to encrypt/decrypt an n -bit message
- Can we do better?

Wishful Thinking…

- Get *d* pseudorandom scalars from just one **cheap product** operation \star
- Replace $\mathbb{Z}_q^{d \times d}$ chunks with \mathbb{Z}_q^{d}
- **Main question:** How to define the product \star so that (a, b) is **pseudorandom**
	- Requires care: **coordinate-wise** product **insecure** for **small** errors
- **Answer:** Let \star be multiplication in a polynomial ring, e.g. $\mathbb{Z}_q^d[X]/(X^d+1)$
	- **Fast** and **practical** with the FFT: $d \log d$ operations mod q
	- The same **ring structure** used in NTRU [HPS08]

LWE over Rings/Modules

• Let $R = \mathbb{Z}[X]/(X^d + 1)$ for d a power of 2 and $R_q = R/qR$

- Elements of R_q are degree $< d$ **polynomials** with coefficients $mod q$
- Operations over R_q are **very efficient** using FFT-like algorithms
- **Search LWE:** Find secret vector of **polynomials** s in R_q^k given

- Each equation is d **related equations** on a secret of dimension $n = d \cdot k$
	- LWE: $d = 1, k = n$
	- Ring-LWE: $d = n, k = 1$
	- Module-LWE: Interpolate
- **Decision LWE:** Distinguish (a_i, b_i) from uniform $(\boldsymbol{a}_i,\boldsymbol{b}_i)$ in $R_q^k\times R_q$

Hardness of Ring/Module-LWE

• **Theorem [LPR10]:** For any $R = O_K$

 R^k −GapSVP \le search R^k −LWE \le decision R^k −LWE

- Can we **dequantize** the worst-case/average-case reduction?
	- The **classical GapSVP** \leq LWE reduction is of little use: for the relevant factors, **GapSVP** for **ideals** (i.e., $k = 1$) is **easy**
- How hard (or not) is GapSVP on *ideal/module lattices*?
	- For **polynomial approximation** no significant improvement versus general lattices (even for ideals)
	- For **subexponential approximation** we have better **quantum** algorithms for **ideals**, but not for $k > 1$
- **Reverse** reductions? Seems not **without** increasing …

Why Lattice-based Cryptography?

• **Provable** security

- If scheme is **not secure**, one **can solve** hard mathematical problems
- Not always happens in current implementations (e.g., RSA)
- **Worst-case** security
	- If scheme not secure, one can break **every** instance of lattice problems
	- Factoring and discrete log only guarantee **average-case** security
- Still **unbroken** by quantum algorithms
	- No progress over the last 50 years
	- But we don't know: see <https://eprint.iacr.org/2024/555>
- Efficiency
	- Mainly additions/multiplications, no modular exponentiations

Basic Cryptographic Applications

One-Way Functions

- Parameters $m, n, q \in \mathbb{Z}$, key $A \in \mathbb{Z}_q^{n \times m}$
- Input $\boldsymbol{x} \in \{0,1\}^m$, output $f_A(\boldsymbol{x}) = A \cdot \boldsymbol{x}$
- **Theorem [Ajt96]:** For $m > n \log q$, if **SIVP** is **hard** to approximate in the **worst-case**, then f_A is **one-way**
- Cryptanalysis: Given A, y, find x such that $y = A \cdot x$
	- **Easy** problem: find **arbitrary u** such that $y = A \cdot u$
	- All solutions $y = A \cdot x$ are of the form $t + \mathcal{L}^{\perp}(A)$
	- Requires to find small vector in $t + \mathcal{L}^{\perp}(A)$ or to find a lattice point $v \in \mathcal{L}^{\perp}(A)$ close to t (average-case instance of CVP w.r.t. $\mathcal{L}^{\perp}(A)$)

Collision-resistant Hash Functions

Collisions **exists inherently**, but are hard to find **efficiently**

• Given $\pmb{A} = (\pmb{a}_1, ..., \pmb{a}_m)$, define $h_A\!:\!\{0,1\}^m \!\!\rightarrow \mathbb{Z}_q^n$

$$
h_A(z_1,\ldots,z_m) = a_1 \cdot z_1 + \cdots + a_m \cdot z_m
$$

- Set $m > n \log q$ in order to get **compression**
- A collision $a_1 \cdot z_1 + \cdots + a_m \cdot z_m = a_1 \cdot z'_1 + \cdots + a_m \cdot z'_m$ yields $a_1 \cdot z'_1$ $(z_1 - z_1') + \cdots + \overline{a_m} \cdot (z_m - z_m') = 0$, with $z_m - z_m' \in \{-1, 0, 1\}$

Commitments

- Analogy: **lock** message in a box, give the box, keep the key
	- Later give the key to **open** the box
- Implementation:
	- **Randomized** function $\text{Com}(x; r)$, where x is the message and r is the randomness
	- To **open** a commitment simply reveal (x, r)
- Security properties
	- **Hiding:** Com $(x; r)$ reveals nothing on x
	- **Binding: Can't open Com** $(x; r)$ to $x' \neq x$

Commitments

- Take two **random** SIS matrices A_1, A_2
- The **message** is $x \in \{0,1\}^m$ and the **randomness** is $r \in \{0,1\}^m$
- Commitment: $\text{Com}(x; r) = f_{A_1, A_2}(x; r) = A_1 \cdot x + A_2 \cdot r$
	- **Hiding:** $A_2 \cdot r = f_{A_2} (r)$ is **statistically** close to **uniform** over \mathbb{Z}_q^n , and thus x is information-theoretically **hidden**
	- **Binding:** Finding (x, r) and (x', r') such that $Com(x; r)$ = $\text{Com}(x', r')$ directly contradicts the **collision resistance** of f_{A_1, A_2}

Leftover Hash Lemma

- Let H be a family of **universal hash functions** with domain D and image *J*. Then, for $x \leftarrow_s \mathcal{D}$, $h \leftarrow_s \mathcal{H}$, and $u \leftarrow_s \mathcal{I}$: $\mathbb{S}\mathbb{D}\left(\left(h,h(x)\right);(h,u)\right)\leq 1/2\cdot\sqrt{|\mathcal{I}|/|\mathcal{D}|}$
- Note that the function $h_A(r) = [A \cdot r]_q$ is **universal**
	- As $\forall r_1 \neq r_2$: $\mathbb{P}_A[h_A(r_1) = h_A(r_2)] = \mathbb{P}_A[A \cdot (r_1 r_2) = 0] = q^{-n}$
- Hence, for $r \leftarrow_{\$} \{0,1\}^m$, $A \leftarrow_{\$} \mathbb{Z}_q^{n \times m}$, and $\bm{u} \leftarrow_{\$} \mathbb{Z}_q^n$, whenever $m = 2 + n \log q + 2n$

$$
\mathbb{SD}\left(\left(A, \left[A \cdot r\right]_q\right); \left(A, u\right)\right) \leq 1/2 \cdot \sqrt{q^n / 2^m} \leq 2^{-n}
$$

Pseudorandom Functions [GGM84]

• Family $\mathcal{F} = \{F_s: \{0,1\}^k \rightarrow \mathcal{D}\}$ s.t. querying F_s , for random s, is indistinguishable from querying **random function**

• Countless applications: **secret-key** encryption, message **authentication** codes, secure **identification**, …

Constructing PRFs

- **Heuristically**: AES, etc.
	- Fast, secure against **known** cryptanalytic attacks, **not** provably secure
- From **any OWF** [GGM84]:
	- For **any** length-doubling **PRG** $G(s) = (G_0, G_1)$, let

$$
F_s(x_1, \ldots, x_k) = G_{x_k}(\cdots G_{x_1}(s) \cdots)
$$

- **Provably** secure
- Inherently **sequential** (i.e., $\geq k$ iterations)
- From **any synthesizer** [NR95,NR97,NRR00]
	- Low depth: NC^1 , NC^2 or TC^0 (i.e., $O(1)$ depth with **threshold** gates)
	- **Provably** secure

Synthetisers [NR95]

• A **deterministic** function $S: \mathcal{D} \times \mathcal{D} \rightarrow \mathcal{D}$ such that for any polynomial m, and for **uniform** $a_1, ..., a_m, b_1, ..., b_m \in \mathcal{D}$

$$
\{S(a_i,b_j)\}\approx\{U_{i,j}\}
$$

Uniform distribution over $\mathcal{D}^{m \times m}$

• An almost **length-squaring** PRG with **locality**

PRFs from Synthetisers [NR95]

- **Base case:** One-bit PRF $F_{s_0,s_1}(x) = s_x \in \mathcal{D}$
- **Inductive step:** Given a k-bit PRF family $\mathcal{F} = \{F_s: \{0,1\}^k \to \mathcal{D}\}$ define $F_{s_L,s_R}\colon \{0,1\}^{2k} \to \mathcal{D}$

$$
F_{S_L, S_R}(x_L, x_R) = S(F_{S_L}(x_L), F_{S_R}(x_R))
$$

$$
S_{1,0}, S_{1,1} \rightarrow S_{1,x_1}
$$
\n
$$
S_{2,0}, S_{2,1} \rightarrow S_{1,x_2}
$$
\n
$$
S_{3,0}, S_{3,1} \rightarrow S_{1,x_2}
$$
\n
$$
S_{4,0}, S_{4,1} \rightarrow S_{1,x_2}
$$
\n
$$
S_{1,x_2} \rightarrow S
$$
\n
$$
S
$$

• **Security:** Every query to $F_{s_L}(x_L)$, $F_{s_R}(x_R)$ defines **pseudorandom** inputs $a_1, ..., a_m, b_1, ..., b_m$ for the synthetiser

Synthetisers from LWE?

- Hard to **tell apart** $(a_i, b_i = \langle a_i, s \rangle + e_i)$ from **random** (a, b)
- By a **hybrid argument**, the following are **pseudorandom**

 $A_i \in \mathbb{Z}_q^n, A_i \cdot S_1 + E_{1,1} \in \mathbb{Z}_q^{n \times n}, A_i \cdot S_2 + E_{2,1} \in \mathbb{Z}_q^{n \times n}, ...$

• This suggests the following synthetiser from LWE

• But synthetisers must be **deterministic**!

Learning with Rounding [BPR12]

- Generate errors **deterministically**
	- Round \mathbb{Z}_q to a **sparse** subset \mathbb{Z}_n
	- For $p < q$, let $[x]_p = [(p/q) \cdot x] \bmod p$
- The LWR problem: Tell apart $(a, b = |\langle a, s \rangle|_p) \in \mathbb{Z}_q \times \mathbb{Z}_p$ from **random** (a, b) 2 18
	- LWE **conceals** low-order bits by adding **small random error**
	- LWR just **discards** those bits instead
- LWE \leq LWR for $q\geq p\cdot n^{\omega(1)}$ (seems 2^n -hard for $q\geq p\cdot \sqrt{n}$)
	- Proof idea: w.h.p. $(a, \lfloor \langle a, s \rangle + e \rfloor_p) \approx (a, \lfloor \langle a, s \rangle \rfloor_p)$ and $(a, [U(\mathbb{Z}_q))]$ \overline{p}) \approx $(\bm{a},U(\mathbb{Z}_p))$ where $U(\mathbb{Z}_q)$ is uniform over \mathbb{Z}_q
	- Reduction with Improved parameters in [AKPW13]

0

0

 $a = 24$

1

12

6

 $p = 3$

Synthetiser-based PRF from LWR

- Synthetiser: $S: \mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^{n \times n} \to \mathbb{Z}_p^{n \times n}$ is $S(A, \mathcal{S}) = [A \cdot \mathcal{S}]_p$
	- Note that the range \mathbb{Z}_p is **slightly smaller** than the domain \mathbb{Z}_q
- Construction of PRF with domain $\{0,1\}^k$ for $k=2^d$
	- **Tower** of power moduli $q_d > q_{d-1} > \cdots > q_0$
	- The secret key is 2k matrices $\mathbf{S}_{i,b} \in \mathbb{Z}_{q_d}^{n \times n}$, for $i \in [k]$, $b \in \{0,1\}$
	- Depth $d = \log k$ of LWR synthetisers

$$
\left[\left[\left[\mathbf{S}_{1,x_{1}}\cdot\mathbf{S}_{2,x_{2}}\right]_{q_{2}}\cdot\left[\mathbf{S}_{3,x_{3}}\cdot\mathbf{S}_{4,x_{4}}\right]_{q_{2}}\right]_{q_{1}}\cdot\left[\left[\mathbf{S}_{5,x_{5}}\cdot\mathbf{S}_{6,x_{6}}\right]_{q_{2}}\cdot\left[\mathbf{S}_{7,x_{7}}\cdot\mathbf{S}_{8,x_{8}}\right]_{q_{2}}\right]_{q_{1}}\right]_{q_{0}}
$$

• Each synthetiser is in NC^1 , and thus the PRF is in NC^2

Direct Construction

• Simple **direct** PRF construction from DDH [NR97,NRR00]:

$$
F_{g,s_1,\dots,s_k}(x_1,\dots,x_k) = g^{\prod_i s_i^{x_i}}
$$

- This can be implemented in $TC^0 \subseteq NC^0$ (albeit with **huge** circuit)
- Direct construction from LWE
	- Public moduli $q > p$
	- The secret key is **uniform** A and **short** $S_1, ..., S_k$ over \mathbb{Z}_q
	- The PRF evaluates a **rounded subset-product** function

$$
F_{A,S_1,\ldots,S_k}(x_1,\ldots,x_k) = \left[A \cdot \prod_i s_i^{x_i}\right]_p
$$

Proof Sketch

- Similar to the $LWE \leq LWR$ proof
- Thought experiment: answer queries with

$$
\tilde{F}_{A,S_1,\dots,S_k}(x_1,\dots,x_k) = \left[(A \cdot S_1^{x_1} + x_1 \cdot E) \cdot S_2^{x_2} \cdot \dots \cdot S_k^{x_k} \right]_p
$$
\n
$$
= \left[A \cdot \prod_{i=1}^k S_i^{x_i} + x_1 \cdot E \cdot \prod_{i=2}^k S_i^{x_i} \right]_p
$$

- W.h.p. $\tilde{F}(x) = F(x)$ due to **small error** and **rounding**
- Using LWE replace $(A, A \cdot S_1 + E)$ with uniform (A_0, A_1)
	- New function $F(x) = [A_{x_1} \cdot S_2^{x_2} \cdot \cdots \cdot S_k^{x_k}]$ x_2 \cdots ∙ S_k^x x_k \overline{p}
	- Repeat for \mathcal{S}_2 , ..., \mathcal{S}_k to get $F'^{...'}(x) = [A_x]_p = U(x)$

NIST Standards

Falcon

Digital Signatures

- Syntax $\Pi = (KGen, Sign, Vrfy)$
	- **KGen** (1^{λ}) : Takes the **security parameter** $\lambda \in \mathbb{N}$, and outputs (vk, sk)
	- **Sign**(sk, μ): Takes plaintext μ , and outputs a **signature** σ
	- Vrfy(vk , μ , σ): Takes plaintext μ and signature σ , and outputs a **bit**
- Correctness: $\forall \lambda \in \mathbb{N}, \forall (\nu k, sk) \in \mathbf{KGen}(1^{\lambda}), \forall \mu$

 $\mathbb{P}[\text{Vrfy}(vk, \text{Sign}(sk, \mu))] = 1]=1$

Lattice Trapdoors

• Recall: Lattice-based **one-way functions**

 $f_A(x) = A \cdot x \mod q \in \mathbb{Z}_q^n$

$$
\begin{array}{c}\n n \\
q\n\end{array}\n\quad f_A(s,e) = s^t \cdot A + e^t \mod q \in \mathbb{Z}_q^m
$$

(short \bm{x} , surjective) (short \bm{e} , injective)

- Task: **Invert**
	- Find the **unique** s (or e) such that $f_A(s, e) = s^t \cdot A + e^t \mod q$
	- Given $u = f_A(x') = A \cdot x' \bmod q$, sample random $x \leftarrow f_A^{-1}(u)$ with probability proportional to $\exp(-\|\boldsymbol{x}\|^2/s^2)$
- How? Via a **strong trapdoor** for A (a **short basis** of $\mathcal{L}^{\perp}(A)$)
	- Deeply studied question [Babai86,Ajtai99,Klein01,GPV08,AP09,P10]

A Different Kind of Trapdoor [MP12]

- Drawbacks of previous solutions
	- Generating A with short basis is **complex** and **slow**
	- Inversion algorithms trade-off quality (i.e., length of basis vectors which depends on the Gaussian std parameter s) for **efficiency**
- Alternative: The trapdoor is **not a basis**
	- But just **as powerful**
	- **Simpler** and **faster**
- Overview of method
	- Start with *fixed*, *public*, lattice defined by gadget matrix G which admits very **fast**, and **parallel**, algorithms for f_G^{-1}
	- **Randomize** G into A via nice **unimodular** transform (the trapdoor)
	- **Reduce** f_A^{-1} to f_G^{-1} plus some pre/post-processing

Step 1: The Gadget Matrix

- Let $q = 2^k$ and take $g = \begin{bmatrix} 1 & 2 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}$
- To invert $f_{\bm{g}} \colon \mathbb{Z}_q \times \mathbb{Z}^k \to \mathbb{Z}_q^k$

$$
f_g(s, e) = s \cdot g + e = [s + e_0 \quad 2s + e_1 \quad \cdots \quad 2^{k-1}s + e_{k-1}] \bmod q
$$

- Get lsb of s from $2^{k-1}s + e_{k-1}$, then repeat for the next bits of s
- Works when $e_{k-1} \in [-q/4, q/4]$
- To sample Gaussian preimage for $u = f_a(x) = \langle g, x \rangle$
	- For $i \in [0, k-1]$, choose $x_i \leftarrow (2\mathbb{Z} + u)$ and let $u \leftarrow (u x_i)/2 \in \mathbb{Z}$
	- E.g., $k = 2: x_0 \leftarrow (2z_0 + u)$, $u \leftarrow (u 2z_0 u)/2 = -z_0$, $x_1 \leftarrow$ $(2z_1 - z_0)$, $\langle g, x \rangle = 2z_0 + u + 2(2z_1 - z_0) = u + 4z_1 = u \mod 4$

Step 1: The Gadget Matrix G

• Alternative view: The lattice $\mathcal{L}^{\perp}(\bm{g})$ has basis

$$
\mathbf{S} = \begin{bmatrix} 2 & & & \\ -1 & 2 & & \\ & -1 & \ddots & \\ & & -1 & 2 \end{bmatrix} \in \mathbb{Z}^{k \times k}, \text{with } \tilde{\mathbf{S}} = 2 \cdot \mathbf{I}_k
$$

- The above inversion algorithms are special cases of the randomized **nearest-plan algorithm** [Bab86,Kle01,GPV08]
- Define $\boldsymbol{G} = \boldsymbol{I}_n \otimes \boldsymbol{g} \in \mathbb{Z}^{n \times nk}$ (where \otimes is the **tensor** product)
	- Computing f_G^{-1} reduces to n **parallel calls** to f_g^{-1}
	- Also applies to $H \cdot G$, for any *invertible* $H \in \mathbb{Z}_q^{n \times n}$

Step 2: Randomize G

- Define semi-random $[\overline{A} | G]$ for uniform $\overline{A} \in \mathbb{Z}_q^{n \times \overline{m}}$
	- It can be seen that inverting $f_{\overline{[A]}G]}^{-1}$ reduces to inverting f_{G}^{-1} [CHKP10]
- Choose a **short Gaussian** $R \in \mathbb{Z}^{\overline{m} \times n \log q}$ and let

$$
A = [\overline{A} | G] \cdot \begin{bmatrix} I & R \\ & I \end{bmatrix} = [\overline{A} | G - \overline{A}R]
$$

- A is **uniform** because, by the **leftover hash lemma**, $[A|AR]$ is **statistically close** to uniform when $\overline{m} \approx n \log q$
- Alternatively, $[I|\overline{A}| \overline{A} \cdot R_1 + R_2]$ is **pseudorandom** under the LWE assumption (in normal form)

A New Trapdoor Notion

- We constructed $A = \overline{A}|\overline{G} \overline{A}R|$
- Say that R is a *trapdoor* for A with $\textbf{tag } H \in \mathbb{Z}_q^{n \times n}$ (invertible) if

$$
A \cdot \begin{bmatrix} R \\ I \end{bmatrix} = H \cdot G
$$

- The **quality** of **R** is s_1 (**R**) = max $||u|| = 1$ $R \cdot u$
- **Fact:** $s_1(R) \approx (\sqrt{\text{rows}} + \sqrt{\text{cols}}) \cdot r$ for Gaussian entries w/ std dev r
- Also **R** is a trapdoor for $A [0|H' \cdot G]$ with tag $H H'$ [ABB10]
- Relating new and old trapdoors
	- Given basis S for $\mathcal{L}^{\perp}(G)$ and trapdoor R for A, one can *efficiently* construct **basis** S_A for $\mathcal{L}^{\perp}(G)$ where $\|\tilde{S}_A\| \leq (s_1(R) + 1) \cdot \|\tilde{S}\|$

Step 3: Reduce f_A^- −1 to $f_{\bm{G}}^-$ −1

- Let R be a **trapdoor** for A with **tag** $H = I: A \cdot$ \boldsymbol{R} \overline{I} $= G$
- Inverting LWE
	- Given $\boldsymbol{b}^t = \boldsymbol{s}^t \cdot \boldsymbol{A} + \boldsymbol{e}^t$, recover \boldsymbol{s} from $\boldsymbol{b}^t \cdot \boldsymbol{s}$ \boldsymbol{R} \boldsymbol{I} $= s^t \cdot G + e^t$. \boldsymbol{R} \overline{I}
	- Works if each entry of e^t · \boldsymbol{R} \overline{I} $\in [-q/4, q/4)$
- Inverting SIS
	- Given u , sample $z \leftarrow f_{G}^{-1}(u)$ and output $x =$ \boldsymbol{R} \boldsymbol{I} $\cdot z \in f_A^{-1}(u)$
	- Indeed, $A \cdot x = G \cdot z = u$

Leaks about **R**!

$$
\Sigma = \mathbb{E}_x[x \cdot x^t] = \mathbb{E}_z[R \cdot z \cdot z^t \cdot R^t] \approx R \cdot R^t
$$

Step 3: Perturbation Method [P10]

- Generate *perturbation* vector p with covariance $s^2 \cdot I R \cdot R^t$
- Sample **spherical z** such that $\mathbf{G} \cdot \mathbf{z} = \mathbf{u} \mathbf{A} \cdot \mathbf{p}$
- Output $\mathbf{x} = \mathbf{p} +$ \boldsymbol{R} \boldsymbol{I} ∙ Z

$$
A \cdot x = A \cdot p + A \cdot \begin{bmatrix} R \\ I \end{bmatrix} \cdot z = A \cdot p + G \cdot z = u
$$

Falcon: Digital Signatures from SIS

- Generate **uniform** $vk = A$ with **trapdoor** $sk = T$
- To sign μ , use T to sample $\sigma = x \in \mathbb{Z}^m$ such that $A \cdot x = H(\mu)$, where H is a **public** hash function
	- Recall that is drawn from a **Gaussian distribution**, which **reveals nothing** about the trapdoor T
- To verify $(\mu, \sigma = \mathbf{x})$ under $vk = A$ simply check $A \cdot \mathbf{x} = H(\mu)$ and that x is sufficiently short
- Security: Forging a signature for a new message μ^* requires finding a **short** x^* such that $A \cdot x^* = H(\mu^*)$
	- This is **equivalent** to solving the SIS problem
	- Signatures queries **do not help** because they **reveal nothing** about the trapdoor T

Crystals-Dilithium

Canonical Identification Schemes

- **Completeness:** The **honest** prover convinces the **honest** verifier (with all but a negligible probability)
- **Passive Security:** No (**efficient**) **malicious** prover knowing only pk can convince the **honest** verifier
	- Even in case the attacker knows many **accepting transcripts** corresponding to **honest** protocol executions

- Given a **canonical** ID scheme, we can derive a **signature scheme** as follows:
	- Alice obtains $\sigma = (\alpha, \gamma)$ from the **prover**, using the **secret key** sk and choosing $\beta = H(x, \alpha)$
	- Bob checks that (α, β, γ) is a **valid transcript**, with $\beta = H(x, \alpha)$

The Fiat-Shamir Transform

Theorem [FS86]. If the ID scheme is **passively** secure, the signature derived via the **Fiat-Shamir** transform is **UF-CMA**

- **Remark:** The original proof requires to model H as an **ideal** hash function (**random oracle**)
	- It is **debatable** in the community what such a proof means in **practice**
- Can we prove security in the **plain model** (i.e., no random oracles)?
	- Many **impossibility** results for **general** ID schemes
	- **Possible** for **some** classes of ID schemes assuming so-called **correlation intractability**

Sufficient Criteria for Passive Security

- One can show the following criteria are **sufficient** for achieving **passive security**:
	- **Special soundness:** Given any pk and two **accepting** transcripts (α, β, γ) and $(\alpha, \beta', \gamma')$ for pk with $\beta \neq \beta'$, there is a polynomial-time algorithm **outputting**
	- **HVZK: Honest** proofs **reveal nothing** about the secret key sk

Proofs of Knowledge

- The **special soundness** property implies that any successful prover must essentially **know the secret key**
- In fact, any such prover can be used to **extract** the secret key:
	- Run the prover upon input pk in order to obtain a transcript (α, β, γ)
	- **Rewind** the prover after it already sent α and forward it **another random challenge** β' , which yields a transcript $(\alpha, \beta', \gamma')$
	- As long as $\beta \neq \beta'$, **special soundness** allows us to obtain sk
- The above can be formalized, but the proof requires **some care**
	- Because the transcripts (α, β, γ) and $(\alpha, \beta', \gamma')$ are **correlated**

Honest-Verifier Zero-Knowledge

- How do we formalize that a trascript **reveals nothing** on sk ?
	- This is tricky: transcripts shall not reveal even **one bit** of
- Require that honest transcripts can be **efficiently simulated** given just pk (but not sk)
	- Whatever the verifier could compute via the protocol, he could have computed by **talking to himself** (i.e., by running the simulator)
- A canonical ID scheme is **perfect honest-verifier zeroknowledge** (HVZK) if \exists PPT S such that:

$$
(pk, sk, S(pk)) \equiv (pk, sk, \langle P(pk, sk), V(pk) \rangle)
$$

Canonical ID Scheme from Discrete Log

- **Special HVZK:** Upon input $pk = x$, simulator S outputs (α, β, γ) such that $\alpha=g^{\gamma}/x^{\beta}$ and $\beta,\gamma \leftarrow_{\mathbb{S}} \mathbb{Z}_q$
- **Special soundness:** Assume we are given two accepting transcripts (α, β, γ) and $(\alpha, \beta', \gamma')$ for $pk = x$, with $\beta \neq \beta'$
	- This implies $g^{\gamma-\gamma} = x^{\beta-\beta}$
	- Thus, $w = (\gamma \gamma') \cdot (\beta \beta')^{-1}$ is the **discrete logarithm** of x

Let's Try the Same Idea using Lattices

- **HVZK:** Upon input $pk = (A, t)$, **simulator** *S* outputs (α, β, γ) such that $\alpha = A \cdot \gamma - \beta \cdot t$ and $\beta \leftarrow_{\S} \mathbb{Z}_q, \gamma \leftarrow_{\S} \mathbb{Z}_q^m$
- **Special soundness:** Assume we are given two accepting transcripts (α, β, γ) and $(\alpha, \beta', \gamma')$ for $pk = (A, t)$, with $\beta \neq \beta'$
	- This implies $A \cdot (\gamma \gamma') = (\beta \beta') \cdot t$
	- Thus, $\boldsymbol{s} = (\boldsymbol{\gamma} \boldsymbol{\gamma}') \cdot (\beta \beta')^{-1}$ is the **solution** for $\boldsymbol{A} \cdot \boldsymbol{s} = \boldsymbol{t}$

Many Problems…

- The challenge space is **small**
	- $q \approx 2^{12}$ for **encryption**
	- $q \approx 2^{30}$ for **signatures**
	- $q \approx 2^{32}$ for **advanced** applications
- This means that a **successful prover** can just **guess** β
- The vector we extract is **not guaranteed to be small**
	- Recall that **removing** the requirement of **s** being **small** makes lattice problems **trivial**
- **Solution:** Choose small u, β and repeat the protocol in parallel

Modified Protocol (Take 1)

- The verifier checks the above $\forall j = 1, ..., k$ and that the coefficients of each γ_i are **small** (i.e., in {0,1,2})
- **Special soundness:** Given $A \cdot \gamma_j = \beta_j \cdot t + \alpha_j$ and $A \cdot \gamma'_j =$ $\beta'_j \cdot t + \alpha_j$ with $\beta_j \neq \beta'_j$, extract $\mathbf{s} = (\boldsymbol{\gamma}_j - \boldsymbol{\gamma}'_j) \cdot (\beta_j - \beta'_j)^{-1}$
	- The elements of $\gamma_j \gamma'_j$ are in {-2, -1,0,1,2}, and $\beta_j \beta'_j$ is in ${-1,1}$, so *s* also lies in ${-2, -1, 0, 1, 2}$

Insecurity of the Protocol

- There are some **caveats**:
	- We **extracted** a **slightly bigger** secret
	- We need to **repeat** for $k = 128$ or $k = 256$ times
- Even worse, the protocol **does not** satisfy **HVZK**
	- Suppose that the challenge is $\beta = 1$

Possible Fix?

- Maybe we can sample **u** from a **larger domain**?
	- Suppose that the challenge is $\beta = 1$

- Whenever a γ coefficient is 0 or 6 we know that \boldsymbol{s} is 0 or 1, but the other coefficients are **hidden** (i.e., they could be **equally** 0 or 1)
- So, s only effects the probability that a γ coefficient is 0 or 6

Possible Fix?

- Maybe we can sample **u** from a **larger domain**?
	- Suppose that the challenge is $\beta = 1$

- In other words, the coefficients 1,2,3,4,5 are **equally likely** to appear **regardless** of the **secret key**
- Natural idea: Send γ only when all the coefficients are in this range

In General…

- Suppose s has coefficients in $\{0,1,\ldots,a\}$ and that \boldsymbol{u} has coefficients in $\{0,1,\dots,b-1\}$
	- Here, $b > a$
- Then, for all $a \le i < b$, we have $\mathbb{P}[s + u = i] = 1/b$
	- Moreover, there are $b a$ such i's and thus $1 a/b$ **probability** of keeping the value **secret**
- The probability that a γ coefficient is in $\{1, ..., b-1\}$ is $1-1/b$
	- The probability that they **all are** is $(1 1/b)^m$
	- The probability that they all are for all $\boldsymbol{\gamma}_1, ..., \boldsymbol{\gamma}_k$ is $(1 1/b)^{mk}$
	- By setting $b = mk$, we get $(1 1/b)^{mk} \approx 1/e$

Modified Protocol (Take 2)

- The prover checks whether **any** of the coefficients contained in γ_j is 0 or $mk + 1$
	- If it is, **abort** and **restart** the protocol
- The verifier checks the above $\forall j = 1, ..., k$ and that the coefficients of each γ_i are **small** (i.e., in $\{0, ..., mk\}$)

Modified Protocol (Take 2)

- **Special soundness:** Given $A \cdot \gamma_j = \beta_j \cdot t + \alpha_j$ and $A \cdot \gamma'_j =$ $\beta'_j \cdot t + \alpha_j$ with $\beta_j \neq \beta'_j$, extract $s = (\gamma_j - \gamma'_j) \cdot (\beta_j - \beta'_j)^{-1}$ • The elements of $\gamma_j - \gamma'_j$ are in { $-mk, ... mk$ }, and $\beta_j - \beta'_j$ is in $\{-1,1\}$, so \bm{s} also lies in $\{-mk, ..., mk\}$
- **HVZK:** Yes, as now γ _i never depends on s
	- **Caveat:** What is α_j in case of **abort**?

Modified Protocol (Take 3)

- The verifier checks the above $\forall j = 1, ..., k$ and that the coefficients of each γ_i are **small** (i.e., in $\{0, ..., mk\}$)
- But now it also **additionally checks** that

$$
\alpha = \mathbf{H}(A \cdot \boldsymbol{\gamma}_1 - \beta_1 \cdot \boldsymbol{t}, \ldots, A \cdot \boldsymbol{\gamma}_k - \beta_k \cdot \boldsymbol{t})
$$

• In case of **abort**, the HVZK simulator can still send a **random**

In Practice

- The previous protocol still needs to be **repeated in parallel** $k =$ 128 or 256 times
	- And this is the best one can get for **arbitrary** lattices
- However:
	- The proof size for **one equation** is roughly the same as the proof size for **many equations** (amortization with **logarithmic** growth)
	- Working with **polynomial rings** instead of \mathbb{Z}_q allows for **one-shot approximate** proofs (i.e., the coefficients of **s** are **small**)
	- Using more **complex techniques**, one obtains **almost one-shot exact** proofs (i.e., the coefficients of s are in $\{0,1\}$)

Crystals-Kyber

Public-Key Encryption

- **Proposed** by Diffie and Hellman in their seminal paper [DH76]
- First **realization** by Rivest, Shamir and Adelman based on the hardness of **factoring** [RSA78]

Chosen-Plaintext Attack (CPA) Security

- The attacker cannot even guess a **single bit** of the plaintext
	- Remember that the messages are chosen by the adversary
	- CPA security implies hardness of **recovering the message**
	- CPA security implies hardness of **recovering the secret key**

Regev PKE [Reg05]

- **Key Generation:** $pk = (A, b)$ and $sk = s$, where $b^t = s^t \cdot A + e^t$ and $\boldsymbol{s} \in \mathbb{Z}_q^n$, $\boldsymbol{A} \in \mathbb{Z}_q^{n \times m}$
- **Encryption:** The encryption of x w.r.t. pk is made of two parts
	- Ciphertext preamble $c_0 = A \cdot r$ for random $r \in \{0,1\}^m$
	- Ciphertext payload $c_1 = b^t \cdot r + x \cdot q/2$
	- Bob outputs $c_1 s^t \cdot c_0 \approx x \cdot q/2$
- **Security:** By LWE we can switch (A, b) with (A, b) for uniformly $\sqrt{\mathbf{r}}$ random \bm{b}^{t}
	- By the **leftover hash lemma**, we can finally replace c_0 with uniformly random c_0 , so that c_1 hides x **information theoretically**

Dual Regev [GPV08]

- **Key Generation:** $pk = (A, u)$ and $sk = r$, where $u = A \cdot r$ and $r \in$ $\{0,1\}^m$, $A \in \mathbb{Z}_q^{n \times m}$
- **Encryption:** The encryption of x w.r.t. pk is made of two parts
	- Ciphertext preamble $\boldsymbol{c}_0 = \boldsymbol{b}^\text{t} = \boldsymbol{s}^\text{t} \cdot \boldsymbol{A} + \boldsymbol{e}^\text{t}$ for random $\boldsymbol{s} \in \mathbb{Z}_q^n$
	- Ciphertext payload $c_1 = s^t \cdot u + e' + x \cdot q/2$
	- Bob outputs $c_1 c_0 \cdot r \approx x \cdot q/2$
- **Security:** By the leftover hash lemma, we can switch u with **uniformly random**
	- By LWE we can switch (c_0, c_1) with **uniformly random** (c_0, c_1)

Primal versus Dual

- Public key
	- Primal: pk is **pseudorandom** with **unique** sk
	- \bullet Dual: pk is statistically random with many possible sk
- Ciphertext
	- Primal: A fresh LWE sample with **many possible** coins
	- Dual: Multiple LWE samples with **unique** coins
- Security
	- Primal: Encrypting with **uniform** pk induces **random** ciphertext
	- Dual: By LWE can switch the ciphertext to **random**
- Efficiency: The matrix A can be **shared** by different users

Most Efficient [LP11]

- **Key Generation:** $pk = (A, u)$ and $sk = s$, where $u^t = s^t \cdot A + e^t$ and $\boldsymbol{s} \in \chi^n$, $A \in \mathbb{Z}_q^{n \times n}$
- **Encryption:** The encryption of x w.r.t. pk is made of two parts
	- Ciphertext preamble $c_0 = A \cdot r + e'$ for $r \in \chi^n$
	- Ciphertext payload $c_1 = u^t \cdot r + e' + x \cdot q/2$
	- Bob outputs $c_1 s^t \cdot c_0 \approx x \cdot q/2$
- **Security:** By LWE we can switch (A, u) with (A, u) for **uniformly random**
	- This requires LWE with secrets from the **error distribution**
	- Next, we can replace (c_0, c_1) with **uniformly random** (c_0, c_1)

Chosen-Ciphertext Attack (CCA) Security

- The above notion captures a strong **non-malleability** guarantee
	- No attacker can **maul** a ciphertext c for message m into a ciphertext \tilde{c} for message \widetilde{m} related to m
	- The **gold standard** for security of PKE in **practice**

Fujisaki-Okamoto Transform

- The **FO transform** [FO99,FO13] turns **passively** (**IND-CPA**) secure PKE schemes into **actively** (**IND-CCA**) secure ones
	- The transformation requires two **hash functions** (random oracles)
	- The obtained scheme is better understood as a **key encapsulation mechanism** (KEM)

• We can combine a **KEM** with an **SKE** scheme to get a **PKE** scheme

One-Wayness of PKE

- **OW-CPA:** PKE makes it **hard to guess** the message
	- The message is **uniformly random** and **unknown** to the attacker
- **OW-PCA:** As before but now the attacker can query a **plaintextchecking oracle** which allows to check if $\textbf{Dec}(sk, c) = m$

Modularization of the FO Transform

- We can view FO as the **concatenation** of **two transforms U** \circ **T**
	- The first transformation takes care of **derandomization** and allows to go from **IND-CPA** to **OW-PCA**
	- The second transformation takes care of **hashing** and allows to go from **OW-PCA** to **IND-CCA**

Transformation T: From IND-CPA to OW-PCA

- Encryption becomes **deterministic** (the **randomness** is $G(m)$)
- Decryption **re-encrypts** m' using randomness $G(m')$ and outputs m' if and only if it obtains c
- **Theorem [HKK17]:** Assuming (Enc, Dec) is IND-CPA (OW-CPA), **Enc', Dec') is OW-PCA**

Transformation U: From OW-PCA to IND-CCA

- Encapsulation outputs $k = H(c, m)$ and c
- Decapsulation obtains $m' = \textbf{Dec}(sk, c)$ and outputs m' • Here, m' could be ⊥ (explicit rejection)
- Theorem [HKK17]: Assuming (Enc', Dec') is OW-PCA, (**Encaps, Decaps**) is **IND-CCA**

Advanced Cryptographic

Applications

Identity-Based Encryption

• **Postulated** by Shamir in 1984 [Sha84]

- Avoids the need of **certificates**
- Introduces the so-called **key escrow** problem
- First **realization** by Boneh and Franklin in 2001 [BF01]

Selective Security of IBE

 mpk, msk , random b

 $c \leftarrow \text{Enc}(ID^*, x_b)$

- Every **selectively** secure IBE is also **fully** secure with an **exponential** loss in the parameters
	- Also, general **transformations** are known

Warm-up Construction [CHKP10]

- **Public parameters:** $mpk = (A_0, A_1^0, A_1^1, A_2^0, A_2^1, u)$
	- Assume, for simplicity, $|ID| = 2$

• **Master secret key:** Trapdoor for A_0

- Secret key for identity $ID = 01$: **Short vector s** s.t. $\mathbf{F}_{01} \cdot \mathbf{s} = \mathbf{u} \bmod q$, where $\bm{F}_{01} = [\bm{A}_0|\bm{A}_1^0|\bm{A}_2^1]$
- Note: A trapdoor for A_0 **implies** a trapdoor for F_{01}
- **Encryption: Dual** Regev encryption of x w.r.t. matrix \boldsymbol{F}_{01}
	- The ciphertext is $c_0^t = r^t \cdot F_{01} + e^t$ and $c_1 = r^t \cdot u + e' + x \cdot q/2$
	- Bob outputs $c_1 c_0^t \cdot s \approx x \cdot q/2$

Simulation

- Assume the **challenge** identity is $ID^* = 11$
	- The reduction **can't know** the secret key for ID^*
- Choose A_0 , A_1^1 , A_2^1 uniformly at **random**, but sample A_1^0 , A_2^0 with the corresponding **trapdoors**
- The reduction can derive trapdoors for $F_{00} = [A_0|A_1^0|A_2^0]$, $F_{01} = [A_0 | A_1^0 | A_2^1]$, and $F_{10} = [A_0 | A_1^1 | A_2^0]$ but not for $F_{11} = [A_0 | A_1^{\bar{1}} | A_2^{\bar{1}}]$
	- This allows the reduction to **simulate** key extraction queries while **embedding** the LWE challenge in the simulation

A More Efficient Construction [ABB10]

- **Public parameters:** $mpk = (A_0, A_1, G, u)$
- **Master secret key:** Trapdoor for A_0
	- Secret key for identity *ID*: **Short vector** *s* s.t. $\mathbf{F}_{ID} \cdot \mathbf{s} = \mathbf{u} \bmod q$, where $\mathbf{F}_{ID} = [A_0|A_1 + ID \cdot G]$
	- As before, a trapdoor for A_0 **implies** a trapdoor for F_{ID}
- **Encryption: Dual** Regev encryption of x w.r.t. matrix \mathbf{F}_{ID}
	- The ciphertext is $c_0^t = r^t \cdot F_{ID} + e^t$ and $c_1 = r^t \cdot u + e' + x \cdot q/2$
	- Bob outputs $c_1 c_0^t \cdot s = r^t \cdot u + e' + x \cdot q/2 r^t \cdot F_{ID} \cdot s + e^t \cdot$ $s = r^t \cdot u + e^{t} + x \cdot q/2 - r^t \cdot u + e^{t} \cdot s \approx x \cdot q/2$

Simulation Revisited

- Assume the **challenge** identity is ID^*
	- The reduction **can't know** the secret key for ID^*
- The reduction does **not** know a trapdoor for A_0 , but it knows a trapdoor for the gadget matrix \boldsymbol{G}
- Let $A_1 = [A_0 \cdot R ID^* \cdot G]$, where R is random and low-norm • This is **indistinguishable** from the real A_1
- Note that $\boldsymbol{F}_{ID} = [A_0 | A_0 \cdot \boldsymbol{R} + (ID ID^*) \cdot \boldsymbol{G}]$
	- Using the technique of [MP12], we can **derive** a trapdoor for \mathbf{F}_{ID} given a trapdoor for A_0
	- This allows to **simulate** key extraction queries for all $ID \neq ID^*$
	- The LWE challenge can be **embedded** as before

Inner-product Encryption [KSW08]

- Decryption reveals x **if and only if** $\langle a, b \rangle = 0$
	- Here, we can also be interested in **attributes privacy**
- Can be used to obtain **predicate encryption** for polynomial evaluation, CNFs/DNFs of bounded degree, and **fuzzy** IBE

Generalizing to Inner Products [AFV11]

- **Public parameters:** $mpk = (A, A_1, ..., A_k, G, u)$
- **Master secret key:** Trapdoor for A
	- Secret key for b: **Short vector** s_h s.t. $F_h \cdot s_h = u \mod q$, where $F_h =$ $[A | \sum_i b_i \cdot A_i]$
- **Encryption: Dual** Regev encryption of x w.r.t. matrix A
	- The ciphertext is $c_0^t = r^t \cdot A + e^t$, $c' = r^t \cdot u + e' + x \cdot q/2$, and $c_i^t =$ $r^t\cdot (A_i+a_i\cdot G)+e^t_i$ (so it indeed hides $\boldsymbol{a})$
	- Bob sets $c_b = \sum_i b_i \cdot c_i = r^t \cdot (\sum_i b_i \cdot A_i + \sum_i a_i \cdot b_i \cdot G) + \sum_i b_i \cdot e_i$ which equals $\mathbf{r}^t \cdot \sum_i b_i \cdot A_i + \sum_i b_i \cdot e_i$
	- Hence, $[\bm{c}_0 | \bm{c}_b] \approx \bm{r}^{\text{t}} \cdot [\bm{A} | \sum_i b_i \cdot A_i]$ is a dual Regev ciphertext
	- Bob outputs $c' c_0^t \cdot s_b c_b^t \cdot s_b \approx x \cdot q/2$

Attribute-based Encryption [SW04]

- Decryption reveals x **if and only if** $f(\boldsymbol{a}) = 0$
	- Here, we are not interested in **attributes privacy**
- Plenty of applications for **privacy-preserving data mining** and in cryptography for **big data**

Handling Multiplications [BGG+14]

- Let $c_1^t = r^t \cdot (A_1 + a_1 \cdot G) + e_1^t$ and $c_2^t = r^t \cdot (A_2 + a_2 \cdot G) + e_2^t$
- Want: $c_{12}^t = r^t \cdot (A_{12} + a_1 \cdot a_2 \cdot G) + e_{12}^t$
	- Compute $(A_1 + a_1 \cdot G) \cdot G^{-1}(-A_2) = A_1 \cdot G^{-1}(-A_2) a_1 \cdot A_2$
	- Compute $(A_2+a_3 \cdot G) \cdot a_1 = a_1 \cdot A_2 + a_1 \cdot a_2 \cdot G$
	- The **difference** is $A_{12} + a_1 \cdot a_2 \cdot G$
- So, we let $c_{12}^t = c_1^t \cdot G^{-1}(-A_2) + c_2^t \cdot a_1$
	- $G^{-1}(-A_2)$ and a_1 are small and **do not effect noise**
	- As usual, additionally let $c_0^t = r^t \cdot A + e^t$, $c' = r^t \cdot u + e' + x \cdot q/2$
	- If $a_1 \cdot a_2 = 0$, then $[c_0 | c_{12}] \approx r^{\text{t}} \cdot [A | A_{12}]$
	- The secret key is a **short vector** s_{12} s.t. $[A|A_{12}] \cdot s_{12} = u \text{ mod } q$
	- Bob outputs $c' c_0^t \cdot s_{12} c_{12}^t \cdot s_{12} \approx x \cdot q/2$

Computing over Encrypted Data

- Can we have a (public-key) encryption scheme which allows to run **computations** over **encrypted data**?
- Question dating back to the late 70s
	- Ron Rivest and "privacy homomorphisms"
- Partial solutions known
	- E.g., RSA and Elgamal enjoy limited forms of homomorphism
- First solution by Craig Gentry after 30 years
	- The "Swiss Army knife of cryptography"

Motivation: Outsourcing of Computation

- Email, web search, navigation, social networking, …
- What about **private** x?

Outsourcing of Computation - Privately

Wish: Homomorphic **evaluation** function: Eval: pk , f, $\text{Enc}(pk, x) \rightarrow \text{Enc}(pk, f(x))$

Fully-Homomorphic Encryption (FHE)

A Paradox (and its Resolution)

- But remember that encryption is **randomized**!
- Output of **Eval** will look as a fresh and random ciphertext

Syntax of FHE

- More formally: $\Pi = (KGen, Enc, Dec,Eval)$
	- KGen $(1^{\lambda}, 1^{\tau})$: Takes the security parameter $\lambda \in \mathbb{N}$ and another parameter $\tau \in \mathbb{N}$, and outputs (pk, sk)
	- Enc(pk , x): Takes a plaintext bit x, and outputs a ciphertext c
	- Dec(sk, c): Takes a ciphertext c, and outputs a bit x
	- Eval (pk, Γ, \vec{c}) : Takes $\vec{c} = (c_1, ..., c_t)$, and outputs another vector \vec{c}'
- **Correctness:** Let $C = \{C_{\tau}\}_{\tau \in \mathbb{N}}$. Then Π is correct for C if $\forall \lambda, \tau \in \mathbb{N}$ $N, \forall (pk, sk) \in KGen(1^{\lambda}, 1^{\tau})$:

 $\forall x \in \{0,1\}$: $\mathbb{P}[\text{Dec}(sk, \text{Enc}(pk, x)) = x] = 1$

 $\forall \Gamma \in C_{\tau}, \forall \vec{x} \in \{0,1\}^{t}$: $\mathbb{P}[\text{Dec}(sk, \text{Eval}(pk, \Gamma, \text{Enc}(pk, \vec{x}))) = \Gamma(\vec{x})$]=1

Degrees of Homorphism

- **Fully-Homomorphic Encryption:** Correctness holds for C such that C_1 already contains **all** Boolean circuits
	- No need to consider the additional parameter τ
- **Somewhat/Levelled Homomorphic encryption:** Correctness holds for the family C such that for all $\tau \in \mathbb{N}$ the set C_{τ} contains all Boolean circuits **with depth** τ
- **Additively Homomorphic Encryption:** Correctness holds for such that C_1 contains all Boolean circuits with only **XOR gates**
	- No need to consider the additional parameter τ

Trivial FHE?

- Let (KGen, Enc, Dec) be any PKE scheme
- Define the following **fully-homomorphic** PKE (KGen, Enc, Eval', Dec'):
	- Eval' $(pk, \Gamma, c) = (\Gamma, c)$
	- $\mathbf{Dec}'(sk, c) = \Gamma(\mathbf{Dec}(sk, c))$

Wish: Complexity of decryption **much less** than running the circuit from scratch

Strong Homomorphism

- The simplest (and strongest) requirement is to ask that fresh and evaluated ciphertexts **look the same**
- We say that Π is **strongly homomorphic** for $C = \{C_{\tau}\}_{\tau \in \mathbb{N}}$, if for all $\tau \in \mathbb{N}$, every $\Gamma \in C_{\tau}$ and $\vec{x} \in \{0,1\}^t$, it holds

Fresh_{$\Pi, \vec{x}(\lambda) = \left\{ (pk, \vec{c}, \vec{c}') :$} $(pk, sk) \leftarrow_{\$} \textbf{KGen}(1^{\lambda}, 1^{\tau})$ $\vec{c} \leftarrow_{\S} \textbf{Enc}(pk, \vec{x}), \vec{c}' \leftarrow_{\S} \textbf{Enc}(pk, \Gamma(\vec{x}))$ \approx_{S} or \approx_{C} or

$$
\mathbf{Eval}_{\Pi, \vec{x}}(\lambda) = \left\{ (pk, \vec{c}, \vec{c}'): \begin{array}{c} (pk, sk) \leftarrow_{\S} \mathbf{KGen}(1^{\lambda}, 1^{\tau}) \\ \vec{c} \leftarrow_{\S} \mathbf{Enc}(pk, \vec{x}), \vec{c}' \leftarrow_{\S} \mathbf{Eval}(pk, \Gamma, \vec{c}) \end{array} \right\}
$$

Strong Homomorphism

- Assume the class C contains some C_{τ^*} which includes AND and XOR (or NAND) gates
- Then we can evaluate every circuit by repeatedly evaluating each gate on the outputs of preceedings gates
	- By **strong homomorphism**, the output distribution when evaluating any Γ is at most $negl(\lambda) \cdot size(\Gamma)$ far from that of a fresh encryption of the output
- Hence, we have obtained a **strongly fully-homomorphic** PKE!

Compactness

- The following **weaker property** is often **sufficient**
- We say that Π is **compact** if there is a **fixed polynomial bound** $B(\cdot)$ such that for all $\lambda, \tau \in \mathbb{N}$, any circuit Γ with t-bit inputs and 1-bit output, and all $\vec{x} \in \{0,1\}^t$:

$$
\mathbb{P}\left[|c'|\leq B(\lambda):\frac{(pk, sk) \leftarrow_{\$} KGen(1^{\lambda}, 1^{\tau})}{\vec{c} \leftarrow_{\$} Enc(pk, \vec{x}), c' \leftarrow_{\$} Fval(pk, \Gamma, \vec{c})}\right] = 1
$$

- Note that B **does not depend** on τ
	- An even weaker condition (dubbed **weak compactness**) is to have $B(\lambda, \tau)$, but still say $B(\lambda, \tau) = \text{poly}(\lambda) \cdot o(\log |C_{\tau}|)$

Secret-Key versus Public-Key FHE

- There is also a **secret-key** variant of FHE
	- Just set $pk = \varepsilon$, and have both **Enc**, **Dec** take only sk as input, whereas **Eval** takes only Γ , c
- Simple transform from SK-FHE to PK-FHE: Given $\Pi =$ $(KGen, Enc, Dec,Eval)$ let $\Pi' = (KGen', Enc', Dec,Eval)$
	- KGen' runs KGen and lets $pk = (c_0, c_1)$ where $c_0 \leftarrow s$ Enc(sk, 0) and $c_1 \leftarrow_s$ **Enc**(*sk*, 1)
	- Enc'(pk , x) outputs Eval(Γ_{id} , c_x) where Γ_{id} represents the identity
	- If Π is **strongly homomorphic**, the output of \textbf{Enc}' is **statistically close** to that of $\mathbf{Enc}(sk, x)$
	- Both strong homomorphism and semantic security are **preserved**!

The Gentry-Sahai-Waters FHE Scheme

- In what follows we will present the FHE scheme due to:
	- C. Gentry, A. Sahai, B. Waters: "Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based." CRYPTO 2013
- Based on the **Learning with Errors (LWE)** assumption
- Only achieves **levelled homomorphism**
	- But can be **bootstrapped** to **full homomorphism** using a trick by Gentry (under additional assumptions)
- Plaintext space will be $\mathbb{Z}_q = [-q/2, q/2)$, for a large prime q
	- For simplicity let us write $[a]_q$ for a mod q

Eigenvectors Method (Basic Idea)

- Let C_1 and C_2 be matrices for **eigenvector** \vec{s} , and **eigenvalues** x_1, x_2 (i.e., $\vec{s} \times C_i = x_i \cdot \vec{s}$)
	- $C_1 + C_2$ has eigenvalue $x_1 + x_2$ w.r.t. \vec{s}
	- $C_1 \times C_2$ has eigenvalue $x_1 \cdot x_2$ w.r.t. \vec{s}
- Idea: Let C be the ciphertext, \vec{s} be the secret key and x be the plaintext (say over \mathbb{Z}_q)
	- Homomorphism for **addition/multiplication**
	- But **insecure**: Easy to compute eigenvalues

Approximate Eigenvectors (1/2)

- Approximate variant: $\vec{s} \times C = x \cdot \vec{s} + \vec{e} \approx x \cdot \vec{s}$
	- Decryption works as long as $\|\vec{e}\|_{\infty} \ll q$

$$
\vec{s} \times C_1 = x_1 \cdot \vec{s} + \vec{e}_1 \qquad \vec{s} \times C_2 = x_2 \cdot \vec{s} + \vec{e}_2
$$

$$
\|\vec{e}_1\|_{\infty} \ll q \qquad \|\vec{e}_2\|_{\infty} \ll q
$$

• Goal: Define **homomorphic** operations

$$
C_{add} = C_1 + C_2:
$$

\n
$$
\vec{s} \times (C_1 + C_2) = \vec{s} \times C_1 + \vec{s} \times C_2
$$

\n
$$
= x_1 \cdot \vec{s} + \vec{e}_1 + x_2 \cdot \vec{s} + \vec{e}_2
$$

\n
$$
= (x_1 + x_2) \cdot \vec{s} + (\vec{e}_1 + \vec{e}_2)
$$

\n
$$
(x_1 + x_2) \cdot \vec{s} + (\vec{e}_1 + \vec{e}_2)
$$

\n
$$
(x_1 + x_2) \cdot \vec{s} + (\vec{e}_1 + \vec{e}_2)
$$

Approximate Eigenvectors (2/2)

- Approximate variant: $\vec{s} \times C = x \cdot \vec{s} + \vec{e} \approx x \cdot \vec{s}$
	- Decryption works as long as $\|\vec{e}\|_{\infty} \ll q$

$$
\vec{s} \times C_1 = x_1 \cdot \vec{s} + \vec{e}_1 \qquad \vec{s} \times C_2 = x_2 \cdot \vec{s} + \vec{e}_2
$$

$$
\|\vec{e}_1\|_{\infty} \ll q \qquad \|\vec{e}_2\|_{\infty} \ll q
$$

• Goal: Define **homomorphic** operations

$$
C_{\text{mult}} = C_1 \times C_2:
$$

\n
$$
\vec{s} \times (C_1 \times C_2) = (x_1 \cdot \vec{s} + \vec{e}_1) \times C_2
$$

\n
$$
= x_1 \cdot (x_2 \cdot \vec{s} + \vec{e}_2) + \vec{e}_1 \times C_2
$$

\n
$$
= x_1 \cdot x_2 \cdot \vec{s} + (x_1 \cdot \vec{e}_2 + \vec{e}_1 \times C_2)
$$

\n**small!**
\n**Small!**
\n**Small!**

Shrinking Gadgets

• Write entries in C using **binary decomposition**; e.g. $\begin{bmatrix} 0 & 1 \end{bmatrix}$

$$
C = \begin{bmatrix} 3 & 5 \\ 1 & 4 \end{bmatrix} \text{ (mod 8)} \xrightarrow{\text{yields}} \text{bits}(C) = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} \text{ (mod 8)}
$$

\n• **Reverse** operation:

$$
C = G \times G^{-1}(C) = \begin{bmatrix} 2^{N-1} & \dots & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 0 & 2^{N-1} & \dots & 2 & 1 \\ \hline \dots & \dots \\ k \cdot N = k[\log q] & \Rightarrow \vec{s} \times C = \vec{s} \times G \times G^{-1}(C) \end{bmatrix} \times \text{bits}(C)
$$

LWE – Rearranging Notation

Regev PKE – Pictorially

The GSW Scheme

The GSW Scheme – Homomorphism

Invariant:
$$
\vec{s} \times C = \vec{e} + x \cdot \vec{s} \times G
$$

$$
C_{\text{mult}} = C_1 \times G^{-1}(C_2)
$$

$$
\vec{s} \times C_1 \times G^{-1}(C_2) = (\vec{e}_1 + x_1 \cdot \vec{s} \times G) \cdot G^{-1}(C_2)
$$

\n= $\vec{e}_1 \times G^{-1}(C_2) + x_1 \cdot \vec{s} \times G \times G^{-1}(C_2)$
\n= $\vec{e}_1 \times G^{-1}(C_2) + x_1 \cdot \vec{s} \times C_2$
\n= $\vec{e}_1 \times G^{-1}(C_2) + x_1 \cdot (\vec{e}_2 + x_2 \cdot \vec{s} \times G)$
\n= $(\vec{e}_1 \times G^{-1}(C_2) + x_1 \cdot \vec{e}_2) + x_1x_2 \cdot \vec{s} \times G$
\n= $\vec{e}_{\text{mult}} + x_1x_2 \cdot \vec{s} \times G$

$\vec{e}_{\text{mult}} \|_{\infty} \leq N \cdot \|\vec{e}_1\|_{\infty} + \|\vec{e}_2\|_{\infty} \leq (N+1) \cdot \max\{\|\vec{e}_1\|, \|\vec{e}_2\|\}$

The GSW Scheme – Correctness

The GSW Scheme – Semantic Security

- Similar as in the proof of Regev PKE
- Using LWE we move to a **mental experiment** with $A \leftarrow_{\$} \mathbb{Z}_q^{n \times m}$
- Hence, by the **leftover hash lemma**, with $m = \Theta(n \log q)$, the statistical distance between $(A, A \times \vec{r})$ and uniform is negligible
	- By a **hybrid argument** over the columns of R , it follows that the statistical distance between $(A, A \times R)$ and uniform is also negligible
	- Thus, the ciphertext **statistically hides** the plaintext

The GSW Scheme – Parameters

- Correctness requires $n \cdot m \cdot (N+1)^{\tau+1} < q/4$
- **Security** requires $m = \Theta(n \log q)$, e.g. $m \ge 1 + 2n(2 + \log q)$
- **Hardness** of LWE requires $q \leq 2^{n^e}$ for $\epsilon < 1$
	- Substituting we get $q > (2n \log q)^{\tau+3}$
	- And thus $n^{\epsilon} > (\tau + 3)(\log n + \log \log q + 1)$ which for large τ , n yields $n^{\epsilon} > 2\tau \log n$
	- So we set $n = \max(\lambda, \left[4\tau/\epsilon \log \tau^{1/\epsilon}\right]), q = \left[2^{n^{\epsilon}}\right]$, $m=O(n^{1+\epsilon})$, and $\alpha = n/q = n \cdot 2^{-n^{\hat{\epsilon}}}$
- Hence, the size of ciphertexts is polynomial in λ , τ thus yielding a **weakly-compact** FHE

Increasing the Homomorphic Capacity

- The only way to increase the homomorphic capacity of GSW is to pick **larger parameters**
- This dependence can be **broken** using a trick by Gentry
- Main idea: Do a few operations, then **switch keys**

How to Switch Keys

Bootstrappable Encryption

- Let $W_{\Pi}(\lambda, \tau)$ be the set of all fresh and evaluated ciphertexts w.r.t. circuits class C_{τ}
	- For all possible keys and all possible inputs to the circuit
- Given $c_1, c_2 \in W_\Pi(\lambda, \tau)$, let $D_{c_1, c_2}^*(sk)$ be the **augmented decryption circuit**, defined by

$$
D_{c_1,c_2}^*(sk) = NAND(D_{c_1}(sk), D_{c_2}(sk))
$$

- We say that Π is **bootstrappable** if its homomorphic capacity includes all the augmented decryption circuits
	- I.e., $\exists \tau$ s.t. $\forall \lambda \in \mathbb{N}$, c_1 , $c_2 \in W_\Pi(\lambda, \tau(\lambda))$, we have $D^*_{c_1, c_2} \in C_{\tau(\lambda)}$

Bootstrapping Theorem

Theorem. Any **bootstrappable homomorphic** encryption scheme can be transformed into a **compact somewhat homomorphic** encryption scheme

- One can show that the GSW scheme **is bootstrappable**
- Let Π be the bootstrappable scheme; construct Π' as follows:
	- KGen' $(1^{\lambda}, 1^d)$: For each $i \in [0, d]$, run $(pk_i, sk_i) \leftarrow_S \textbf{KGen}(1^{\lambda}, 1^{\tau})$ and $\vec{c}^*_{i_{\rightarrow *}} \leftarrow \S$ $\mathbf{Enc}(pk_{i+1}, sk_i)$, and output $sk' = (sk_0, ..., sk_d), pk' =$ (pk_0, \vec{c}_1^*) \vec{c}_{d-1}^* , \vec{c}_{d-1}^* $\chi^*_{d-1}, p k_d)$
	- Enc'($p k', x$): Return (0, c) where $c \leftarrow_{\$} \textbf{Enc}(pk_0, x)$
	- Dec'(sk', c'): Return Dec(s k_i , c) where $c' = (i, c)$

Bootstrapping Theorem

- Eval' (pk', Γ, \vec{c}) : Go over the circuit in topological order from inputs to outputs; for every gate at level *i* with inputs $(i - 1, c_1)$ and $(i - 1, c_2)$, run $c' \leftarrow_{\$} \textbf{Eval}(pk_i, D^*_{c_1, c_2}, \vec{c}^*_{i-1})$ $\sum_{i=1}^{\infty}$ and use (i, c') as the gate output
- To prove **correctness**, we proceed by **induction**
	- The **auxiliary ciphertexts** $\vec{c}^{\,*}_{i-1}$ $\sum_{i=1}^*$, and fresh ciphertexts are correct
	- Assume that at level *i* two ciphertexts $c_1, c_2 \in W_{\Pi}(\lambda, \tau)$ are correct
	- Let $c' \leftarrow_{\$} \textbf{Eval}(pk_i, D^*_{c_1, c_2}, \vec{c}^*_{i-1})$ $_{i-1}^{\ast}$); as Π is bootstrappable:

$$
\begin{aligned} \n\text{Dec}(sk_i, c') &= D^*_{c_1, c_2}(sk_{i-1}) \\ \n&= NAND(D_{c_1}(sk_{i-1}), D_{c_2}(sk_{i-1})) = NAND(x_1, x_2) \n\end{aligned}
$$

• Moreover, $c' \in W_{\Pi}(\lambda, \tau)$

Bootstrapping Theorem

- To prove **semantic security**, we use a **hybrid argument**
- In hybrid $H_k(\lambda, b)$ we modify key generation by picking all ciphertexts $\vec{c}^{\,*}_{i}$ i_i^* such that $i\geq k$ as fresh encryptions of $\overrightarrow{0}$
	- Note that $H_d(\lambda, b)$ is just the semantic security game for Π'
	- By semantic security of Π , $H_k(\lambda, b) \approx_c H_{k-1}(\lambda, b)$ for each $k \in [0, d]$ and $b \in \{0,1\}$
	- Finally, $H_0(\lambda, b)$ never uses sk_0 , and thus by semantic security of Π no **PPT adversary** can distinguish between $H_0(\lambda, 0)$ and $H_0(\lambda, 1)$ with better than negligible probability

Circular Security

- The above scheme is **compact**, but **not fully homomorphic**, as we need a pair of keys **for each level** in the circuit
- A natural idea is to use a **single pair** (pk, sk) and include in pk' a ciphertext $\vec{c}^* \leftarrow_{\$} \mathbf{Enc}(pk, sk)$
	- Correctness still holds for this variant, but the reduction to **semantic security breaks**
- Workaround: Assume **circular security**
	- I.e., $\text{Enc}(pk, 0) \approx_c \text{Enc}(pk, 1)$ even given $\vec{c}^* \leftarrow_s \text{Enc}(pk, sk)$
	- GSW is **conjectured** to have this property, but no proof of this fact is currently known

Fully-Homomorphic Commitments

- Let $A\in \mathbb{Z}_q^{n\times w}$ and $\pmb{C}=A\cdot \pmb{R}+x\cdot \pmb{G}$ for $\pmb{R}\in \mathbb{Z}^{w\times m}$ and $x\in \mathbb{Z}_q$
	- Think of C as a **commitment** to x w.r.t. A under **randomness** R
- **Homomorphic** operations:

$$
G - C_1 = A(-R_1) + (1 - x_1) \cdot G
$$

\n
$$
C_+ = C_1 + C_2 = A \cdot (R_1 + R_2) + (x_1 + x_2) \cdot G
$$

\n
$$
C_{\times} = C_1 \cdot G^{-1}[C_2]
$$

\n
$$
= A \cdot (R_1 \cdot G^{-1}[C_2]) + x_1 G \cdot G^{-1}[A \cdot R_2 + x_2 \cdot G]
$$

\n
$$
A \cdot (R_1 \cdot G^{-1}[C_2] + x_1 \cdot R_2) + x_1 x_2 G
$$

• Can be extended to **vectors** $\boldsymbol{x} \in \mathbb{Z}_q^L$ $C = A \cdot R + x^{\mathrm{t}} \otimes G$

- A proof system π for **membership** in L is an algorithm V s.t.
	- **Completeness:** For all $x \in L$, then $\exists \zeta$ for which $\mathcal{V}(x,\zeta) = 1$
	- **Soundness:** For all $x \notin L$, then $\forall \zeta$ we have $\mathcal{V}(x, \zeta) = 0$
- Note the fact that a proof exists **might not** be efficiently verifiable
	- I.e., we would like the verifier to run in **polynomial time**

NP Proof Systems $L = \{x: \exists \zeta, \mathcal{V}(x, \zeta) = 1\}$

- An NP proof system π for membership in L is an algorithm V s.t.
	- **Completeness:** For all $x \in L$, then $\exists \zeta$ for which $\mathcal{V}(x, \zeta) = 1$

Proof ζ

- **Soundness:** For all $x \notin L$, then $\forall \zeta$ we have $\mathcal{V}(x, \zeta) = 0$
- **Efficiency:** For all x, we have that $V(x, \zeta)$ halts after poly($|x|$) steps
- Note the running time is measured in terms of $|x|$
	- Necessarily, $|\zeta| = \text{poly}(|x|)$

Examples

- Boolean satisfiability: $SAT = \{ \phi(\cdot) : \exists w \in \{0,1\}^{\lambda}, \phi(w) = 1 \}$
	- **Complete:** Every $L \in NP$ reduces to SAT
	- **Unstructured:** Decidable in time $e^{O(\lambda)}$
- Linear equations: $LIN = \{(A, b): \exists w, A \cdot w = b\}$
	- **Structured:** Decidable in time $O(\lambda^{2.373}) = \text{poly}(\lambda)$
- Quadratic residuosity: $QR_n = \{x : \exists w, x \equiv w^2 \mod n\}$
	- **Structured:** QR_n is a subgroup of \mathbb{Z}_n^*
	- Yet, when $n = p \cdot q$ with $|p| = |q| = \lambda$ finding square roots is equivalent to factoring the modulus (time $e^{\tilde{O}(\lambda^{1/3})}$ on average)

The Class P

- $L \in P$ if there is a **polynomial-time** A such that $L = \{x : \mathcal{A}(x) = 1\}$
	- $L \in BPP$: A is PPT and **errs** with probability $\leq 1/3$
- $L \in \text{coNP}$ if and only if its **complement** $\overline{L} \in \text{NP}$

Proving Non-Membership

- How can we prove **non-membership**?
	- Showing $\phi \notin SAT$ requires to check that $\forall i \in \left[2^{\lambda}\right], \phi(w_i) = 0$
	- Showing $x \notin QR_n$ requires to check that $\forall i \in [\varphi(n)], x \not\equiv w_i^2 \text{mod } n$
- So, a naive proof is **exponentially** large
- We can avoid this if we allow the proof to use
	- **Randomness** (tolerate "error")
	- **Interaction** (add a computationally **unbounded** "prover")
	- S. Goldwasser, S. Micali, C. Rackoff. "The Knowledge Complexity of Interactive Proof-Systems." STOC 1985

Interactive Proof for QR_n $\bm{b'}$ Z $b'(z) = \{$ 0 if $z \in QR_n$ 1 if $z \notin QR_n$ $x \notin QR_n$

• **Completeness:**

• We have $x \notin QR_n \Rightarrow y^2 \in QR_n \wedge xy^2 \notin QR_n$

• **Soundness:**

- We have $x \in QR_n \Rightarrow y^2 \in QR_n \wedge xy^2 \in QR_n$
- Hence, all even *unbounded* provers \mathcal{P}^* succeed w.p. 1/2

Interactive Proof Systems

- An interactive proof system π for L consists of a PPT V and an **unbounded** P such that
	- **Completeness:** For all $x \in L$, then $\mathbb{P}[\langle \mathcal{P}, \mathcal{V}(x) \rangle = 1] \geq 2/3$
	- **Soundness:** For all $x \notin L$, for all \mathcal{P}^* , then $\mathbb{P}[\langle \mathcal{P}^*, \mathcal{V}(x) \rangle = 1] \leq 1/3$
- Completeness and soundness can be bounded by any $c, s: \mathbb{N} \rightarrow$ $[0,1]$ as long as
	- $c(|x|) \ge 1/2 + 1/\text{poly}(|x|)$ and $s(|x|) \le 1/2 1/\text{poly}(|x|)$
	- So, $poly(|x|)$ repetitions yield $s(|x|) c(|x|) \geq 1 2^{-poly(|x|)}$
	- The class NP has $c(|x|) = 1$ and $s(|x|) = 0$, whereas the class BPP requires **no interaction**

The Power of IP

- We have shown that $QR_n \in IP$
	- NP proof for $\overline{QR_n}$ not self-evident
	- This suggests that maybe $NP \subseteq IP$
	- Turns out that $\overline{SAT} \in IP$, and thus $coNP \subseteq IP$
	- In fact, $P^{HP} \subseteq IP = PSPACE$

What Does a Proof Reveal?

• Consider the following **non-interactive** proof for QR_n

- \cdot Generating ζ requires exponential time
- Verifying the proof requires $O(\lambda^2)$ time
- The verifier got something **for free** from seeing ζ
	- Recall that finding w is equivalent to factoring the modulus n

How to Define Zero-Knowledge?

- Intuitively, we might want that
	- The verifier does not learn w
	- The verifier does not learn any symbol of w
	- The verifier does not learn any information about w
	- The verifier does not learn anything (beyond $x \in L$)
- When does the verifier learn something?
	- If at the end of the protocol he can compute something he could not compute without running the protocol
- **Zero-knowledge:** Whatever can be computed while running the protocol could have been computed **without doing so**

Honest-Verifier Zero-Knowledge

- Hence, we must require that $\forall x \in L$ the verifier's view can be **efficiently simulated** given just x (but not w)
	- In other words, the verifier learns whether $x \in L$ but **nothing more**
	- Whatever he could compute via the protocol he could have computed by talking to himself (i.e., by running the simulator)
- An interactive proof system $\pi = (\mathcal{P}, \mathcal{V})$ for L is **perfect honestverifier zero-knowledge** (HVZK) if \exists PPT *S* such that $\forall x \in L$:

 $\mathcal{S}(x) \equiv \langle \mathcal{P}(x,w),\mathcal{V}(x) \rangle$

• Sanity check: Previous proof is **not** HVZK

Perfect Zero-Knowledge

• An interactive proof system $\pi = (\mathcal{P}, \mathcal{V})$ for L is **perfect zeroknowledge** (PZK) if \forall PPT $\mathcal{V}^* \exists$ PPT S s.t. $\forall x \in L$, $\forall z \in \{0,1\}^*$:

$$
S^{\mathcal{V}^*}(x,z) \equiv \langle \mathcal{P}(x,w), \mathcal{V}^*(x,z) \rangle
$$

- This is also known as **black-box zero-knowledge**
- Simulator runs in time $poly(|x|)$, but sometimes we will consider also simulation in **expected polynomial time**
- Auxiliary input captures **context**
	- Other protocol executions
	- A-priori information (in particular about w)

Can SAT be Proved in ZK?

- Why should we care?
	- Because it is an **NP-complete** language
	- If $SAT \in NP$, then **every** $L \in NP$ is provable in zero-knowledge

Theorem: If $SAT \in PZK$, then the polynomial-time hierarchy **collapses to the second level**

- Natural idea: Relax the definition of zero-knowledge
	- **Statistical zero-knowledge (SZK):** Simulator's output **statistically close** to the verifier's view (above theorem even holds for SZK)
	- **Computational zero-knowledge (CZK):** Simulator's output **computationally close** to the verifier's view (recall $\lambda = |x|$)

NP is in CZK

• One can show the following fundamental result:

Theorem: If OWFs exist, then $NP \subseteq CZK$.

- In fact, we will show that $HAM \subseteq CZK$, where HAM is the language of all graphs with an Hamiltonian cycle
	- This problem is NP complete

Zero-Knowledge for NP from FHE

$$
c' \leftarrow_{\$} \mathbf{Eval}(pk, \Gamma_{R,x}, \vec{c})
$$

- Let $L \in NP$ with relation R
	- This means $L = \{x : \exists w \text{ s.t. } R(x, w) = 1\}$
	- Consider the circuit $\Gamma_{R,x}(w) = R(x, w)$
- The above protocol is **not sound**!
	- Can you say why?

Adding Soundness

- Now soundness follows by the fact that, for $x \notin L$, **both ciphertexts** will be encryptions of zero
	- Since those are indistinguishable, Alice can cheat with probability 1/2
- \bullet However, we need to ensure that pk , \vec{c} are **well formed**
	- Alice generates pk_1 , pk_2 and Bob asks her to "open" one **at random**
	- With the other key Alice encrypts \overrightarrow{w}_1 , \overrightarrow{w}_2 s.t. $\overrightarrow{w}_1 \oplus \overrightarrow{w}_2 = \overrightarrow{w}$, and Bob asks her to "open" one of the encryptions **at random**

Adding Zero-Knowledge

- The previous protocol is only **honest-verifier zero-knowledge**
	- In fact, malicious Bob could send to Alice the first ciphertext in the vector \vec{c} , so that d reveals **the first bit** of w
- This can be fixed using **commitments**
	- Namely, Alice sends a commitment to d
	- Hence, Bob must **reveal his randomness** in order to prove he run the computation as needed
	- Finally, Alice opens the commitment revealing d

Non-Interactive Proofs

- So far, we have seen how to obtain zero-knowledge proofs relying on **randomness** and **interaction**
- Can we remove interaction?
	- I.e., Alice sends a single message ζ to Bob to prove that $x \in L$
- As we shall see, **non-interactive** zero-knowledge (NIZK) proofs have exciting applications
	- E.g., post a proof on a website, or on a blockchain

A Negative Result

Theorem: If L admits a **NIZK** proof $(\mathcal{P}, \mathcal{V})$, then $L \in BPP$.

- Consider the following PPT machine deciding L :
	- Given x, run the simulator to obtain $\zeta \leftarrow_S S(x)$
	- Output the same as $V(x, \zeta)$
- **Completeness:** If $x \in L$, the zero-knowledge property implies that a simulated proof should be accepting
- **Soundness:** If $x \notin L$, the verifier V rejects all proofs with high probability (in particular a simulated proof)

Common Reference String Model

- Main idea: Assume a **trusted setup**
	- Typically a common reference string (CRS) accessible to all parties
	- Sometimes just a uniformly random string
	- Need a **trusted party** to generate the CRS in a reliable manner
- Formally, a **non-interactive** proof system is a tuple (G, P, V)
	- $\mathcal{G}(1^{\lambda})$: Outputs a CRS ω
	- $\mathcal{P}(\omega, x, w)$: Outputs a proof ζ
	- $V(\omega, x, \zeta)$: Outputs a decision bit

But Do NIZKs Exist?

- In the **random oracle** model:
	- A. Fiat, A. Shamir. "How to Prove Yourself: Practical Solutions to Identification and Signatures Problems." CRYPTO 1986
- Assuming **Factoring**
	- U. Feige, D. Lapidot, A. Shamir. "Multiple Non-Interactive Zero-Knowledge Proofs based on a Single Random String." FOCS 1990
- In **bilinear** groups:
	- J. Groth, A. Sahai. "Efficient Non-Interactive Proof Systems for Bilinear Groups." SIAM Journal of Computing 41(5), 2012
- Assuming **LWE**
	- C. Peikert, S. Shiehian. "Non-Interactive Zero-Knowledge for NP from (Plain) LWE."

- Given **public-coin 3-round** protocol (P, V) we define its **FScollapse** $(\mathcal{P}_{FS}, \mathcal{V}_{FS})$ as depicted above
	- \mathcal{P}_{FS} obtains α , γ from \mathcal{P} , using $\beta = H(x, \alpha)$
	- V_{FS} checks that V accepts (α, β, γ) , with $\beta = H(x, \alpha)$

The Fiat-Shamir Transform

Theorem: Assuming (P, V) is a 3-round public-coin **argument** for L with negligible **soundness** and **HVZK**, its FScollapse $(\mathcal{P}_{FS},\mathcal{V}_{FS})$ is a **NIZK** argument for L in the ROM

• **Remark:** Arguments versus proofs

- An argument has only **computational** (rather than statistical) **soundness**
- Actually, the FS-collapse is even a **NIZK-PoK** in the ROM
	- S. Faust, G. A. Marson, M. Kholweiss, D. Venturi. "On the Non-Malleability of the Fiat-Shamir Transform." Indocrypt 2012

- Suppose $\exists x \notin L$ and some $\mathcal{P}_{\text{FS}}^*$ producing an **accepting proof**
	- Assume $\mathcal{P}_{\textrm{FS}}^{*}$ makes $p\in \textrm{poly}(\lambda)$ queries to the RO, and makes $\mathcal{V}_{\textrm{FS}}$ accept with probability $\epsilon(\lambda)$
	- We will construct \mathcal{P}^* **breaking soundness** w.p. $poly(\epsilon, 1/p)$
- We rely on the following useful fact:
	- Let **X**, **Y** be **correlated** random variables such that $P[E(X, Y)] \geq \epsilon$ where E is some event
	- Then for at least an $\epsilon/2$ fraction of x's, $\mathbb{P}[E(x, Y)] \geq \epsilon/2$
	- Assume not, and call good an x for which the statement holds

 $\mathbb{P}[E(X, Y)] = \mathbb{P}[\text{Good}] \cdot \mathbb{P}[E(X, Y) | \text{Good}] + \mathbb{P}[\text{Bad}] \cdot \mathbb{P}[E(X, Y) | \text{Bad}] < \epsilon/2 \cdot 1 + 1 \cdot \epsilon/2$

- Let (α, γ) be the proof output by $\mathcal{P}_{\text{FS}}^{*}$
- Denote by $(q_1, ..., q_p)$ the RO queries asked by $\mathcal{P}_{\text{FS}}^*$
	- Each query is a pair (x_i, α_i)
	- Wlog. assume all queries are **distinct** and $\exists i^* \in [p]$ s. t. $q_{i^*} = (\alpha, x)$

Forking Lemma. For an $\epsilon/2p$ fraction of $(q_1, ..., q_{i^*})$ it holds that \mathcal{P}_{FS}^* wins w.p. $\epsilon/2p$ conditioned on $\mathbf{q}_{i^*} = (\alpha, x)$ and $\mathbf{q}_i = q_i$ ($\forall i \leq i^*$)

• Proof: $\exists i^*$ s.t. $\mathcal{P}_{\text{FS}}^*$ wins w.p. ϵ/p conditioned on $\mathbf{q}_{i^*} = (\alpha, x)$

- As otherwise $\overline{\mathcal{P}_{FS}^*}$ does not have advantage $\geq \epsilon$
- The statement then follows directly by the **useful fact**

- The prover \mathcal{P}^* acts as follows
	- Run $\mathcal{P}_{\text{FS}}^{*}$ and answer all RO queries q_i with $i < i^*$ at random
	- Upon input the query q_{i^*} with $\alpha \in q_{i^*}$, forward α to $\mathcal V$ and receive β
	- Use β as the answer to RO query q_{i^*}
	- Upon (α', γ) , **hope** that $\alpha' = \alpha$

- By the **forking lemma**, we get that w.p. $\epsilon/2p$ over the choice of $(\mathbf{q}_1, ..., \mathbf{q}_{i^*}), \overline{P_{FS}}$ wins w.p. $\epsilon/2p$ conditioned on $\alpha' = \alpha$
- Hence:

$$
\mathbb{P}[\mathcal{P}^* \text{ wins}] \ge \left(\frac{\epsilon}{2p}\right)^2
$$

- Since this is **non-negligible**, then soundness follows
- It remains to prove **zero-knowledge**
	- But we did not yet defined what zero-knowledge in the ROM means
	- Typically, the simulator is allowed to **program the random oracle**

- Let S be the **HVZK simulator** for the public-coin protocol
- The **NIZK simulator** S_{FS} :
	- Answer RO query $q_i = (\alpha_i, x_i)$ with random β_i
	- Upon input $x \in L$, run $(\alpha, \beta, \gamma) \leftarrow_s S(x)$ and program $H(x, \alpha) = \beta$
	- Abort if (x, α) was previously queried to the RO
- **Non-triviality:** Need that α is **unpredictable!**

On Adaptive Soundness

- Our definition of soundness for NIZKs is **non-adaptive**
	- In particular, the choice of $x \notin L$ cannot depend on the CRS
	- One can show that the Fiat-Shamir transform actually achieves **adaptive soundness**
- Note that the FS-collapse defines $\beta = H(x, \alpha)$, i.e. we hash both the **statement** x and the **commitment** α
	- Sometimes, a variant where $\beta = H(\alpha)$ is also used
	- However, this might not be adaptively sound leading to **actual attacks** in some applications
	- D. Bernhard, O. Pereira, B. Warinschi. "How not to Prove Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios." ASIACRYPT 2012

Generalization to Multi-Round Protocols

- The FS transform can be generalized to **constant-round** publiccoin arguments
	- The prover \mathcal{P}_{FS} hashes the **current view** $(x, \alpha_1, ..., \alpha_{i-1})$ in order to obtain the *i*-th message β_i from the verifier $\mathcal V$
	- A non-interactive proof now consists of $\zeta = (\alpha_1, ..., \alpha_n)$
- This is also known to be **tight**
	- There exists a **non-constant-round** public-coin argument for which the FS-collapse is **not sound** (even in the ROM)
	- Consider any constant-round public-coin argument with constant soundness, and **amplify** soundness by **sequential repetition**
	- This yields negligible soundness in non-constant rounds
	- But the reduction does not yield negligible soundness anymore

Fiat-Shamir without Random Oracles?

- Natural question: Can we instantiate the random oracle using an **explicit hash family**?
	- Understand **which properties** of a random oracle are necessary for proving security of the Fiat-Shamir transform in the CRS model
- Unfortunately, this is **not** possible for **all** 3-round public-coin proofs/arguments
	- S. Goldwasser, Y. T. Kalai. "On the (in)security of the Fiat-Shamir paradigm." FOCS 2003
	- N. Bitansky, D. Dachman-Soled, S. Garg, A. Jain, Y. T. Kalai, A. Lopez-Alt, D. Wichs. "Why Fiat-Shamir for Proofs Lacks a Proof." TCC 2013
	- Still **possible** for some **specific** class of protocols

Correlation Intractability

- Let $\mathcal{H} = \{h: \{0,1\}^s \rightarrow \{0,1\}^t\}$ be a family of hash functions • Consider any relation $R \subseteq \{0,1\}^s \times \{0,1\}^t$
- We say that H is R -**correlation-intractable** if for all PPT A :

$$
\mathbb{P}[(x,h(x)) \in R: h \leftarrow_{\$} \mathcal{H}; x \leftarrow_{\$} \mathcal{A}(h)] \in neg(A)
$$

• A relation R is said to be ρ -**sparse**, if $\forall x \in \{0,1\}^s$:

$$
\mathbb{P}[(x,y) \in R : y \leftarrow_{\$} \{0,1\}^t] \le \rho(\lambda)
$$

• Moreover, the relation R is **sparse** if $\rho(\lambda) \in \text{negl}(\lambda)$

Fiat-Shamir via Correlation Intractability

Theorem: Assuming $\pi = (\mathcal{P}, \mathcal{V})$ is a 3-round public-coin **proof** for L with **soundness** and **HVZK**, its FS-collapse $(\mathcal{P}_{FS},\mathcal{V}_{FS})$ using a CI hash family H is a **NIZK** argument for L

• Consider the relation:

$$
R_{L,\pi} = \{ ((\alpha, x), \beta) : \exists \gamma \text{ s.t. } x \notin L \land \mathcal{V}(x, (\alpha, \beta, \gamma)) = 1 \}
$$

- It is not hard to show that **statistical soundness** (with negligible soundness error) implies that R_{π} is **sparse**
- But a cheating \mathcal{P}_{FS}^* finds α^* s.t. $((x, \alpha^*), h(x, \alpha^*)) \in R_{L,\pi}$, violating CI

Fiat-Shamir via Correlation Intractability

- Zero-knowledge additionally requires that ℋ is **programmable**
	- Call H 1-universal if for all $x \in \{0,1\}^s$, $y \in \{0,1\}^t$, the probability over the choice of $h \in \mathcal{H}$ that $h(x) = y$ equals 2^{-t}
	- H is **programmable** if it is 1-universal and further there exists an **efficient** algorithm $\textbf{Samp}(1^{\lambda}, x, y)$ that samples from the conditional distribution $h \leftarrow_s \mathcal{H}$ such that $h(x) = y$
- We can assume programmability wlog.
	- Sample $h \leftarrow_{\$} \mathcal{H}$ and a random string $u \leftarrow_{\$} \{0,1\}^t$
	- Output $h(x) \bigoplus u$
	- Algorithm $\textbf{Samp}(1^{\lambda}, x, y)$ picks $h \leftarrow_{\$} \mathcal{H}$ and outputs $(h, h(x) \bigoplus y)$

Fiat-Shamir via Correlation Intractability

• Assuming **obfuscation**:

- Y. T. Kalai, G. N. Rothblum, R. D. Rothblum. "From Obfuscation to the security of Fiat-Shamir for Proofs." CRYPTO 17
- Assuming **optimal KDM-secure** encryption:
	- R. Canetti, Y. Chen, L. Reyzin, R. D. Rothblum. "Fiat-Shamir and CI from Strong KDM-Secure Encryption" EUROCRYPT 18
- Assuming **circularly secure** FHE:
	- R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum, R. D. Rothblum, D. Wichs. "Fiat-Shamir: From Theory to Practice." STOC 19
- Assuming **(plain) LWE**:
	- C.Peikert, S. Shiehian. "Noninteractive Zero Knowledge from (Plain) Learning With Errors." CRYPTO 19

Questions?

Cryptography Course

Prof. Daniele Venturi Dipartimento di Informatica

Academic Year 2024/2025

References

- [Ajt96] Miklós Ajtai: *Generating hard instances of lattice problems (extended abstract).* STOC 1996
- [ACPS09] Benny Applebaum, David Cash, Chris Peikert, Amit Sahai: *Fast cryptographic primitives and circularsecure encryption based on hard learning problems*. CRYPTO 2009
- [GGM84] Oded Goldreich, Shafi Goldwasser, Silvio Micali: How to construct random functions (extended abstract). FOCS 1984
- [Mic01] Daniele Micciancio: *Improving lattice based cryptosystems using the Hermite normal form*. CaLC 2001
- [NR95] Moni Naor, Omer Reingold: Synthesizers and their application to the parallel construction of psuedorandom functions. FOCS 1995
- [NR97] Moni Naor, Omer Reingold: Number-theoretic constructions of efficient pseudo-random functions. FOCS 1997
- [Pei10] Chris Peikert: *An efficient and parallel Gaussian sampler for lattices*. CRYPTO 2010
- [Reg05] Oded Regev: *On lattices, learning with errors, random linear codes, and cryptography*. STOC 2005
- [Sho94] Peter W. Shor: *Algorithms for quantum computation: discrete logarithms and factoring*. FOCS 1994
- [NRR00] Moni Naor, Omer Reingold, Alon Rosen: Pseudo-random functions and factoring (extended abstract). STOC 2000
- [BPR12] Abhishek Banerjee, Chris Peikert, Alon Rosen: *Pseudorandom functions and lattices*. EUROCRYPT 2012

References

- [AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, Daniel Wichs: *Learning with rounding, revisited - New reduction, properties and applications*. CRYPTO 2013
- [Bab86] László Babai: *On Lovász' lattice reduction and the nearest lattice point problem*. Comb. 6(1) 1986
- [Ajt99] Miklós Ajtai: *Generating hard instances of the short basis problem*. ICALP 1999
- [GPV08] Craig Gentry, Chris Peikert, Vinod Vaikuntanathan: *Trapdoors for hard lattices and new cryptographic constructions*. STOC 2008
- [P10] Chris Peikert: *An Efficient and Parallel Gaussian Sampler for Lattices*. CRYPTO 2010
- [AP09] Joël Alwen, Chris Peikert: *Generating shorter bases for hard random lattices*. STACS 2009
- [MP12] Daniele Micciancio, Chris Peikert: *Trapdoors for lattices: simpler, tighter, faster, smaller*. EUROCRYPT 2012
- [Kle01] Philip N. Klein: *Finding the closest lattice vector when it's unusually close*. SODA 2000
- [CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, Chris Peikert: *Bonsai trees, or how to delegate a lattice basis*. EUROCRYPT 2010

